Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Res ; 542: 109196, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936268

RESUMO

Chitosan (CS) and its modification with fatty acid (FA) in addition to the nanoencapsulation with essential oils (EOs) have emerged as promising approaches with diverse applications, particularly in food and fruit preservation. This review aims to curate data on the prospects of CS modified with FA as nanostructures, serving as carriers for EOs and its application in the preservation of fruits. A narrative review with no restricted period was used for the general overview of CS and strategies for its modification with FA. Report on CS modified with FA and nanoencapsulation with EO and their applications were appraised. The prospects of CS modified with FA and EO nanoencapsulation in food and fruit preservation were outlined. Most chitosan-fatty acid (CS-FA) studies have found relevance in water, medical and pharmaceutical industries, with few studies on food preservation. CS-FA formulation with EOs shows substantial potential in preserving fruits and will significantly impact the food industry in the future by extending the shelf life of fruits and reducing food waste.


Assuntos
Quitosana , Ácidos Graxos , Óleos Voláteis , Quitosana/química , Óleos Voláteis/química , Ácidos Graxos/química , Conservação de Alimentos , Composição de Medicamentos , Frutas/química
2.
Sci Rep ; 13(1): 15505, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726386

RESUMO

An opportunistic human pathogenic bacterium, Chromobacterium violaceum resists the potency of most antibiotics by exploiting the quorum sensing system within their community to control virulence factor expression. Therefore, blocking the quorum sensing mechanism could help to treat several infectious caused by this organism. The quorum sensing receptor (CviR) of C. violaceum was used as a model target in the current investigation to identify potentially novel quorum sensing inhibitors from Cladosporium spp. through in silico computational approaches. The molecular docking results confirmed the anti-quorum sensing potential of bioactive compounds from Cladosporium spp. through binding to CviR with varying docking scores between - 5.2 and - 9.5 kcal/mol. Relative to the positive control [Azithromycin (- 7.4 kcal/mol)], the top six metabolites of Cladosporium spp. had higher docking scores and were generally greater than - 8.5 kcal/mol. The thermodynamic stability and binding affinity refinement of top-ranked CviR inhibitors were further studied through a 160 ns molecular dynamic (MD) simulation. The Post-MD simulation analysis confirmed the top-ranked compounds' affinity, stability, and biomolecular interactions with CviR at 50 ns, 100 ns, and 160 ns with Coniochaetone K of the Cladosporium spp. having the highest binding free energy (- 30.87 kcal/mol) and best interactions (two consistent hydrogen bond contact) following the 160 ns simulation. The predicted pharmacokinetics properties of top selected compounds point to their drug likeliness, potentiating their chance as a possible drug candidate. Overall, the top-ranked compounds from Cladosporium spp., especially Coniochaetone K, could be identified as potential C. violaceum CviR inhibitors. The development of these compounds as broad-spectrum antibacterial medicines is thus possible in the future following the completion of further preclinical and clinical research.


Assuntos
Cladosporium , Percepção de Quorum , Humanos , Simulação de Acoplamento Molecular , Antibacterianos , Simulação de Dinâmica Molecular
3.
Microorganisms ; 11(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37764180

RESUMO

Even though the nutritional and economic values of Solanum lycopersicum (tomato) are substantially impacted by microbial spoilage, the available data on its microbial community, particularly during spoilage, are limited and have primarily been characterized using conventional culture-dependent methods. This study employed a targeted high-throughput next-generation sequencing method to longitudinally characterize the microbial diversity of two South African tomato cultivars (jam and round) at varied storage intervals (1, 6, and 12 days). Throughout the storage period, the bacterial communities of the two cultivars were more diverse than the fungal communities. The microbial diversity of both bacteria and fungi was greater and comparable between the cultivars on day 1, but becomes distinct as the storage period increases, with round tomatoes being more diverse than jam tomato, though, on day 12, jam tomato develops greater diversity than round tomato. Overall, the most abundant phyla (though Proteobacteria was most dominant) were Proteobacteria, Firmicutes, and Bacteriodota in the bacterial communities, while Ascomycota and Basidiomycota formed most fungal communities with Ascomycota being dominant. At the genus level, Pantoea and Klebsiella (bacteria), Hanseniaspora, Stemphylium, and Alternaria (fungi) were prevalent. Taken together, this study casts light on a broad microbial diversity profile thus, confirms the cultivars' diversity and abundance differences.

4.
Biomed Res Int ; 2023: 6229503, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388365

RESUMO

Malaria is a devastating disease, and its management is only achieved through chemotherapy. However, resistance to available medication is still a challenge; therefore, there is an urgent need for the discovery and development of therapeutics with a novel mechanism of action to counter the resistance scourge consistent with the currently available antimalarials. Recently, plasmepsin V was validated as a therapeutic target for the treatment of malaria. The pepsin-like aspartic protease anchored in the endoplasmic reticulum is responsible for the trafficking of parasite-derived proteins to the erythrocytic surface of the host cells. In this study, a small library of compounds was preliminarily screened in vitro to identify novel modulators of Plasmodium falciparum plasmepsin V (PfPMV). The results obtained revealed kaempferol, quercetin, and shikonin as possible PfPMV inhibitors, and these compounds were subsequently probed for their inhibitory potentials using in vitro and in silico methods. Kaempferol and shikonin noncompetitively and competitively inhibited the specific activity of PfPMV in vitro with IC50 values of 22.4 and 43.34 µM, respectively, relative to 62.6 µM obtained for pepstatin, a known aspartic protease inhibitor. Further insight into the structure-activity relationship of the compounds through a 100 ns molecular dynamic (MD) simulation showed that all the test compounds had a significant affinity for PfPMV, with quercetin (-36.56 kcal/mol) being the most prominent metabolite displaying comparable activity to pepstatin (-35.72 kcal/mol). This observation was further supported by the compactness and flexibility of the resulting complexes where the compounds do not compromise the structural integrity of PfPMV but rather stabilized and interacted with the active site amino acid residues critical to PfPMV modulation. Considering the findings in this study, quercetin, kaempferol, and shikonin could be proposed as novel aspartic protease inhibitors worthy of further investigation in the treatment of malaria.


Assuntos
Quempferóis , Plasmodium falciparum , Quempferóis/farmacologia , Pepstatinas , Quercetina/farmacologia
5.
Microorganisms ; 11(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37110411

RESUMO

Helianthus annus (sunflower) is a globally important oilseed crop whose survival is threatened by various pathogenic diseases. Agrochemical products are used to eradicate these diseases; however, due to their unfriendly environmental consequences, characterizing microorganisms for exploration as biocontrol agents are considered better alternatives against the use of synthetic chemicals. The study assessed the oil contents of 20 sunflower seed cultivars using FAMEs-chromatography and characterized the endophytic fungi and bacteria microbiome using Illumina sequencing of fungi ITS 1 and bacteria 16S (V3-V4) regions of the rRNA operon. The oil contents ranged between 41-52.8%, and 23 fatty acid components (in varied amounts) were found in all the cultivars, with linoleic (53%) and oleic (28%) acids as the most abundant. Ascomycota (fungi) and Proteobacteria (bacteria) dominated the cultivars at the phyla level, while Alternaria and Bacillus at the genus level in varying abundance. AGSUN 5102 and AGSUN 5101 (AGSUN 5270 for bacteria) had the highest fungi diversity structure, which may have been contributed by the high relative abundance of linoleic acid in the fatty acid components. Dominant fungi genera such as Alternaria, Aspergillus, Aureobasidium, Alternariaste, Cladosporium, Penicillium, and bacteria including Bacillus, Staphylococcus, and Lactobacillus are established, providing insight into the fungi and bacteria community structures from the seeds of South Africa sunflower.

6.
Comput Biol Med ; 145: 105432, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35344868

RESUMO

The potential of fluoroquinolones as remarkable antibacterial agents evolved from their ability to generate 'poison' complexes between type IIA topoisomerases [topo2As (DNA gyrases and topoisomerases IV)] and DNA. However, the overuse of fluoroquinolones coupled with chromosomal mutations in topo2As has increased incidence of resistance and consequently undermined the application of the currently available fluoroquinolones in clinical practice. In this study, the molecular mechanism of interaction between the secondary metabolites of Crescentia cujete (an underutilized plant with proven anti-bacterial activity) and topo2As was investigated using computational methods. Through molecular docking, the top five compounds with the best affinity for each topo2A were identified and subjected to molecular dynamics simulation over a period of 100 ns. The results revealed that the identified compounds had higher binding energy values than the reference standards against the topo2As except for topoisomerase IV ParC, and this was consistent with the results of the structural stability and compactness of the resulting complexes. Specifically, cistanoside D (-49.18 kcal/mol), chlorogenic acid (-55.55 kcal/mol), xylocaine (-33.08 kcal/mol), and naringenin (-35.48 kcal/mol) had the best affinity for DNA gyrase A, DNA gyrase B, topoisomerase IV ParC, and topoisomerase IV ParE, respectively. Of the constituents of C. cujete evaluated, only apigenin and luteolin had affinity for all the four targets. These observations are indicative of the identified compounds as potential inhibitors of topo2As as evidenced from the molecular interactions including hydrogen bonds established with the active site amino acids of the respective targets. This is the first in silico report on the antibacterial effect of C. cujete and the findings would guide structural modification of the identified compounds as novel inhibitors of topo2As for further in vitro and in vivo assessments.


Assuntos
DNA Girase , DNA Topoisomerase IV , DNA Topoisomerases Tipo II/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , DNA Girase/química , DNA Girase/genética , DNA Girase/metabolismo , DNA Topoisomerase IV/metabolismo , Fluoroquinolonas/química , Fluoroquinolonas/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...