Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; 176(3): 715-721, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29383837

RESUMO

Temtamy syndrome is a syndromic form of intellectual disability characterized by ocular involvement, epilepsy and dysgenesis of the corpus callosum. After we initially mapped the disease to C12orf57, we noted a high carrier frequency of an ancient startloss founder mutation [c.1A>G; p.M1?] in our population, and variable phenotypic expressivity in newly identified cases. This study aims to combine 33 previously published patients with 23 who are described here for the first time to further delineate the phenotype of this syndrome. In addition to the known p.M1? founder, we describe four novel homozygous variants, thus increasing the number of Temtamy syndrome-related C12orf57 variants to seven, all but one predicted to be loss of function. While all patients presented with intellectual disability/developmental delay, the frequency of other phenotypic features was variable: 73.2% (41/56) had epilepsy, 63% (34/54) had corpus callosal abnormalities, 14.5% (8/55) had coloboma, and 16.4% (9/55) had microphthalmia. Our analysis also revealed a high frequency of less recognized features such as congenital heart disease (51.4%), and brain white matter abnormalities (38%, 19/50). We conclude that C12orf57 variants should be considered in the etiology of developmental delay/intellectual disability, even when typical syndromic features are lacking, especially in those who trace their ancestry to Saudi Arabia where a founder C12orf57 mutation is among the most common recessive causes of intellectual disability.


Assuntos
Agenesia do Corpo Caloso/diagnóstico , Coloboma/diagnóstico , Anormalidades Craniofaciais/diagnóstico , Anormalidades do Olho/diagnóstico , Agenesia do Corpo Caloso/epidemiologia , Agenesia do Corpo Caloso/genética , Alelos , Coloboma/epidemiologia , Coloboma/genética , Anormalidades Craniofaciais/epidemiologia , Anormalidades Craniofaciais/genética , Anormalidades do Olho/genética , Fácies , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Imageamento por Ressonância Magnética , Mutação , Fenótipo , Prevalência
3.
Genet Med ; 20(1): 64-68, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28640246

RESUMO

PurposeGenome-wide association studies (GWAS) have been instrumental to our understanding of the genetic risk determinants of complex traits. A common challenge in GWAS is the interpretation of signals, which are usually attributed to the genes closest to the polymorphic markers that display the strongest statistical association. Naturally occurring complete loss of function (knockout) of these genes in humans can inform GWAS interpretation by unmasking their deficiency state in a clinical context.MethodsWe exploited the unique population structure of Saudi Arabia to identify novel knockout events in genes previously highlighted in GWAS using combined autozygome/exome analysis.ResultsWe report five families with homozygous truncating mutations in genes that had only been linked to human disease through GWAS. The phenotypes observed in the natural knockouts for these genes (TRAF3IP2, FRMD3, RSRC1, BTBD9, and PXDNL) range from consistent with, to unrelated to, the previously reported GWAS phenotype.ConclusionWe expand the role of human knockouts in the medical annotation of the human genome, and show their potential value in informing the interpretation of GWAS of complex traits.


Assuntos
Genoma Humano , Estudo de Associação Genômica Ampla , Genômica , Mutação com Perda de Função , Alelos , Fácies , Estudos de Associação Genética , Predisposição Genética para Doença , Genética Populacional , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/normas , Genômica/métodos , Genômica/normas , Genótipo , Humanos , Fenótipo , Arábia Saudita
4.
Hum Genet ; 136(11-12): 1419-1429, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28940097

RESUMO

Intellectual disability (ID) is a common morbid condition with a wide range of etiologies. The list of monogenic forms of ID has increased rapidly in recent years thanks to the implementation of genomic sequencing techniques. In this study, we describe the phenotypic and genetic findings of 68 families (105 patients) all with novel ID-related variants. In addition to established ID genes, including ones for which we describe unusual mutational mechanism, some of these variants represent the first confirmatory disease-gene links following previous reports (TRAK1, GTF3C3, SPTBN4 and NKX6-2), some of which were based on single families. Furthermore, we describe novel variants in 14 genes that we propose as novel candidates (ANKHD1, ASTN2, ATP13A1, FMO4, MADD, MFSD11, NCKAP1, NFASC, PCDHGA10, PPP1R21, SLC12A2, SLK, STK32C and ZFAT). We highlight MADD and PCDHGA10 as particularly compelling candidates in which we identified biallelic likely deleterious variants in two independent ID families each. We also highlight NCKAP1 as another compelling candidate in a large family with autosomal dominant mild intellectual disability that fully segregates with a heterozygous truncating variant. The candidacy of NCKAP1 is further supported by its biological function, and our demonstration of relevant expression in human brain. Our study expands the locus and allelic heterogeneity of ID and demonstrates the power of positional mapping to reveal unusual mutational mechanisms.


Assuntos
Exoma/genética , Heterogeneidade Genética , Marcadores Genéticos , Deficiência Intelectual/genética , Mutação , Feminino , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Linhagem , Conformação Proteica
5.
Am J Hum Genet ; 100(5): 831-836, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475863

RESUMO

Larsen syndrome is characterized by the dislocation of large joints and other less consistent clinical findings. Heterozygous FLNB mutations account for the majority of Larsen syndrome cases, but biallelic mutations in CHST3 and B4GALT7 have been more recently described, thus confirming the existence of recessive forms of the disease. In a multiplex consanguineous Saudi family affected by severe and recurrent large joint dislocation and severe myopia, we identified a homozygous truncating variant in GZF1 through a combined autozygome and exome approach. Independently, the same approach identified a second homozygous truncating GZF1 variant in another multiplex consanguineous family affected by severe myopia, retinal detachment, and milder skeletal involvement. GZF1 encodes GDNF-inducible zinc finger protein 1, a transcription factor of unknown developmental function, which we found to be expressed in the eyes and limbs of developing mice. Global transcriptional profiling of cells from affected individuals revealed a shared pattern of gene dysregulation and significant enrichment of genes encoding matrix proteins, including P3H2, which hints at a potential disease mechanism. Our results suggest that GZF1 mutations cause a phenotype of severe myopia and significant articular involvement not previously described in Larsen syndrome.


Assuntos
Heterogeneidade Genética , Fatores de Transcrição Kruppel-Like/genética , Osteocondrodisplasias/genética , Adolescente , Alelos , Criança , Pré-Escolar , Exoma , Feminino , Regulação da Expressão Gênica , Genes Recessivos , Homozigoto , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Análise de Sequência de DNA , Adulto Jovem
6.
Hum Genet ; 136(2): 205-225, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27878435

RESUMO

Pediatric cataract is highly heterogeneous clinically and etiologically. While mostly isolated, cataract can be part of many multisystem disorders, further complicating the diagnostic process. In this study, we applied genomic tools in the form of a multi-gene panel as well as whole-exome sequencing on unselected cohort of pediatric cataract (166 patients from 74 families). Mutations in previously reported cataract genes were identified in 58% for a total of 43 mutations, including 15 that are novel. GEMIN4 was independently mutated in families with a syndrome of cataract, global developmental delay with or without renal involvement. We also highlight a recognizable syndrome that resembles galactosemia (a fulminant infantile liver disease with cataract) caused by biallelic mutations in CYP51A1. A founder mutation in RIC1 (KIAA1432) was identified in patients with cataract, brain atrophy, microcephaly with or without cleft lip and palate. For non-syndromic pediatric cataract, we map a novel locus in a multiplex consanguineous family on 4p15.32 where exome sequencing revealed a homozygous truncating mutation in TAPT1. We report two further candidates that are biallelically inactivated each in a single cataract family: TAF1A (cataract with global developmental delay) and WDR87 (non-syndromic cataract). In addition to positional mapping data, we use iSyTE developmental lens expression and gene-network analysis to corroborate the proposed link between the novel candidate genes and cataract. Our study expands the phenotypic, allelic and locus heterogeneity of pediatric cataract. The high diagnostic yield of clinical genomics supports the adoption of this approach in this patient group.


Assuntos
Catarata/diagnóstico , Catarata/genética , Loci Gênicos , Alelos , Animais , Proteínas de Transporte/genética , Criança , Mapeamento Cromossômico , Fenda Labial/genética , Regulação da Expressão Gênica , Genômica , Fatores de Troca do Nucleotídeo Guanina , Homozigoto , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Microcefalia/genética , Fenótipo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Mapeamento de Interação de Proteínas , Análise de Sequência de DNA , Esterol 14-Desmetilase/genética
7.
Genome Biol ; 17(1): 242, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27894351

RESUMO

BACKGROUND: Ciliopathies are clinically diverse disorders of the primary cilium. Remarkable progress has been made in understanding the molecular basis of these genetically heterogeneous conditions; however, our knowledge of their morbid genome, pleiotropy, and variable expressivity remains incomplete. RESULTS: We applied genomic approaches on a large patient cohort of 371 affected individuals from 265 families, with phenotypes that span the entire ciliopathy spectrum. Likely causal mutations in previously described ciliopathy genes were identified in 85% (225/265) of the families, adding 32 novel alleles. Consistent with a fully penetrant model for these genes, we found no significant difference in their "mutation load" beyond the causal variants between our ciliopathy cohort and a control non-ciliopathy cohort. Genomic analysis of our cohort further identified mutations in a novel morbid gene TXNDC15, encoding a thiol isomerase, based on independent loss of function mutations in individuals with a consistent ciliopathy phenotype (Meckel-Gruber syndrome) and a functional effect of its deficiency on ciliary signaling. Our study also highlighted seven novel candidate genes (TRAPPC3, EXOC3L2, FAM98C, C17orf61, LRRCC1, NEK4, and CELSR2) some of which have established links to ciliogenesis. Finally, we show that the morbid genome of ciliopathies encompasses many founder mutations, the combined carrier frequency of which accounts for a high disease burden in the study population. CONCLUSIONS: Our study increases our understanding of the morbid genome of ciliopathies. We also provide the strongest evidence, to date, in support of the classical Mendelian inheritance of Bardet-Biedl syndrome and other ciliopathies.


Assuntos
Cílios/genética , Transtornos da Motilidade Ciliar/genética , Ciliopatias/genética , Encefalocele/genética , Mutação/genética , Doenças Renais Policísticas/genética , Alelos , Cílios/patologia , Transtornos da Motilidade Ciliar/patologia , Ciliopatias/patologia , Análise Mutacional de DNA , Encefalocele/patologia , Estudos de Associação Genética , Heterogeneidade Genética , Predisposição Genética para Doença , Humanos , Fenótipo , Doenças Renais Policísticas/patologia , Retina/metabolismo , Retina/patologia , Retinose Pigmentar
8.
Genet Med ; 18(6): 554-62, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26355662

RESUMO

PURPOSE: Retinal dystrophies (RD) are heterogeneous hereditary disorders of the retina that are usually progressive in nature. The aim of this study was to clinically and molecularly characterize a large cohort of RD patients. METHODS: We have developed a next-generation sequencing assay that allows known RD genes to be sequenced simultaneously. We also performed mapping studies and exome sequencing on familial and on syndromic RD patients who tested negative on the panel. RESULTS: Our panel identified the likely causal mutation in >60% of the 292 RD families tested. Mapping studies on all 162 familial RD patients who tested negative on the panel identified two novel disease loci on Chr2:25,550,180-28,794,007 and Chr16:59,225,000-72,511,000. Whole-exome sequencing revealed the likely candidate as AGBL5 and CDH16, respectively. We also performed exome sequencing on negative syndromic RD cases and identified a novel homozygous truncating mutation in GNS in a family with the novel combination of mucopolysaccharidosis and RD. Moreover, we identified a homozygous truncating mutation in DNAJC17 in a family with an apparently novel syndrome of retinitis pigmentosa and hypogammaglobulinemia. CONCLUSION: Our study expands the clinical and allelic spectrum of known RD genes, and reveals AGBL5, CDH16, and DNAJC17 as novel disease candidates.Genet Med 18 6, 554-562.


Assuntos
Caderinas/genética , Carboxipeptidases/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Distrofias Retinianas/genética , Feminino , Homozigoto , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Retina/patologia , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/patologia , Sequenciamento do Exoma
9.
Genome Biol ; 16: 240, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26537248

RESUMO

BACKGROUND: Embryonic lethality is a recognized phenotypic expression of individual gene mutations in model organisms. However, identifying embryonic lethal genes in humans is challenging, especially when the phenotype is manifested at the preimplantation stage. RESULTS: In an ongoing effort to exploit the highly consanguineous nature of the Saudi population to catalog recessively acting embryonic lethal genes in humans, we have identified two families with a female-limited infertility phenotype. Using autozygosity mapping and whole exome sequencing, we map this phenotype to a single mutation in TLE6, a maternal effect gene that encodes a member of the subcortical maternal complex in mammalian oocytes. Consistent with the published phenotype of mouse Tle6 mutants, embryos from female patients who are homozygous for the TLE6 mutation fail to undergo early cleavage, with resulting sterility. The human mutation abrogates TLE6 phosphorylation, a step that is reported to be critical for the PKA-mediated progression of oocyte meiosis II. Furthermore, the TLE6 mutation impairs its binding to components of the subcortical maternal complex. CONCLUSION: In this first report of a human defect in a member of the subcortical maternal subcritical maternal complex, we show that the TLE6 mutation is gender-specific and leads to the earliest known human embryonic lethality phenotype.


Assuntos
Desenvolvimento Embrionário/genética , Infertilidade Feminina/genética , Oócitos/crescimento & desenvolvimento , Fatores de Transcrição/genética , Adulto , Animais , Proteínas Correpressoras , Consanguinidade , Feminino , Fertilização in vitro , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais , Ligação Genética , Humanos , Infertilidade Feminina/patologia , Masculino , Meiose/genética , Camundongos , Mutação , Oócitos/patologia , Fenótipo , Arábia Saudita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...