Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 132: 110908, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254431

RESUMO

Ginkgolide A is a highly active platelet activating factor antagonist cage molecule which was isolated from the leaves of the Ginkgo biloba L. It is known for its inflammatory and immunological potentials. This review aims to sketch a current scenario on its therapeutic activities on the basis of scientific reports in the databases. A total 30 articles included in this review suggests that ginkgolide A has many important biological activities, including anti-inflammatory, anticancer, anxiolytic-like, anti-atherosclerosis and anti-atherombosis, neuro- and hepatoprotective effects. There is a lack of its toxicological (e.g. toxicity, cytotoxicity, genotoxicity and mutagenitcity) profile. In conclusion, ginkgolide A may be one of the potential therapeutic lead compounds, especially for the treatment of cardiovascular, hepatological, and neurological diseases and disorders. More studies are necessary on this hopeful therapeutic agent.


Assuntos
Ginkgo biloba , Ginkgolídeos/farmacologia , Ginkgolídeos/uso terapêutico , Lactonas/farmacologia , Lactonas/uso terapêutico , Fator de Ativação de Plaquetas/antagonistas & inibidores , Animais , Ansiolíticos/isolamento & purificação , Ansiolíticos/uso terapêutico , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Ginkgolídeos/isolamento & purificação , Humanos , Lactonas/isolamento & purificação , Folhas de Planta , Fator de Ativação de Plaquetas/metabolismo
2.
Molecules ; 25(16)2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32824120

RESUMO

Neurodegenerative diseases (NDDs) are chronic conditions that have drawn robust interest from the scientific community. Phytotherapeutic agents are becoming an important source of chemicals for the treatment and management of NDDs. Various secondary metabolites have been isolated from Melicope lunu-ankenda plant leaves, including phenolic acid derivatives. However, their neuroprotective activity remains unclear. Thus, the aim of this study is to elucidate the in vitro neuroprotective activity of 7-geranyloxycinnamic acid isolated from Melicope lunu-ankenda leaves. The neuroprotective activity was evaluated in differentiated human neuroblastoma (SH-SY5Y) cells by monitoring cell viability using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Moreover, the potential to impair apoptosis in differentiated cells was investigated employing the Annexin V-FITC assay, acridine orange and propidium iodide (AO/PI) staining, and fluorescence microscopy. Morphological assessment and ultrastructural analysis were performed using scanning and transmission electron microscopy to evaluate the effect of 7-geranyloxycinnamic acid on surface morphology and internal features of the differentiated cells. Pre-treatment of neuronal cells with 7-geranyloxycinnamic acid significantly protected the differentiated SH-SY5Y cells against H2O2-induced apoptosis. Cytoskeleton and cytoplasmic inclusion were similarly protected by the 7-geranyloxycinnamic acid treatment. The present findings demonstrate the neuroprotective potential of 7-geranyloxycinnamic acid against H2O2-induced neurotoxicity in neuronal cells, which is an established hallmark of neuronal disorders.


Assuntos
Cinamatos/química , Neuroblastoma/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Rutaceae/química , Apoptose , Sobrevivência Celular , Humanos , Neuroblastoma/patologia , Estresse Oxidativo/efeitos dos fármacos , Células Tumorais Cultivadas
3.
Front Mol Biosci ; 7: 624494, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33521059

RESUMO

Cancer is a multifactorial disease characterized by complex molecular landscape and altered cell pathways that results in an abnormal cell growth. Natural compounds are target-specific and pose a limited cytotoxicity; therefore, can aid in the development of new therapeutic interventions for the treatment of this versatile disease. Berberine is a member of the protoberberine alkaloids family, mainly present in the root, stem, and bark of various trees, and has a reputed anticancer activity. Nonetheless, the limited bioavailability and low absorption rate are the two major hindrances following berberine administration as only 0.5% of ingested berberine absorbed in small intestine while this percentage is further decreased to 0.35%, when enter in systemic circulation. Nano-based formulation is believed to be an ideal candidate to increase absorption percentage as at nano scale level, compounds can absorb rapidly in gut. Nanotechnology-based therapeutic approaches have been implemented to overcome such problems, ultimately promoting a higher efficacy in the treatment of a plethora of diseases. This review present and critically discusses the anti-proliferative role of berberine and the nanotechnology-based therapeutic strategies used for the nano-scale delivery of berberine. Finally, the current approaches and promising perspectives of latest delivery of this alkaloid are also critically analyzed and discussed.

4.
Molecules ; 24(17)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461914

RESUMO

Plant natural compounds have great potential as alternative medicines for preventing and treating diseases. Melicope lunu-ankenda is one Melicope species (family Rutaceae), which is widely used in traditional medicine, consumed as a salad and a food seasoning. Consumption of different parts of this plant has been reported to exert different biological activities such as antioxidant and anti-inflammatory qualities, resulting in a protective effect against several health disorders including neurodegenerative diseases. Various secondary metabolites such as phenolic acid derivatives, flavonoids, coumarins and alkaloids, isolated from the M. lunu-ankenda plant, were demonstrated to have neuroprotective activities and also exert many other beneficial biological effects. A number of studies have revealed different neuroprotective mechanisms for these secondary metabolites. This review summarizes the most significant and recent studies for neuroprotective activity of M. lunu-ankenda major secondary metabolites in neurodegenerative diseases.


Assuntos
Compostos Fitoquímicos/farmacologia , Rutaceae/química , Metabolismo Secundário , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Medicina Tradicional , Estrutura Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Compostos Fitoquímicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...