Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37961453

RESUMO

Single-cell transcriptome data can provide insights into how genetic variation influences biological processes involved in human biology and disease. However, the identification of gene-level associations in distinct cell types faces several challenges, including the limited reference resource from population scale studies, data sparsity in single-cell RNA sequencing, and the complex cell-state pattern of expression within individual cell types. Here we develop genetic models of cell type specific and cell state adjusted gene expression in mid-brain neurons in the process of specializing from induced pluripotent stem cells. The resulting framework quantifies the dynamics of the genetic regulation of gene expression and estimates its cell type specificity. As an application, we show that the approach detects known and new genes associated with schizophrenia and enables insights into context-dependent disease mechanisms. We provide a genomic resource from a phenome-wide application of our models to more than 1500 phenotypes from the UK Biobank. Using longitudinal genetically determined expression, we implement a predictive causality framework, evaluating the prediction of future values of a target gene expression using prior values of a putative regulatory gene. Collectively, this work demonstrates the insights that can be gained into the molecular underpinnings of diseases by quantifying the genetic control of gene expression at single-cell resolution.

2.
Sci Rep ; 8(1): 2916, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440721

RESUMO

Integrins are transmembrane cell-extracellular matrix adhesion receptors that impact many cellular functions. A subgroup of integrins contain an inserted (I) domain within the α-subunits (αI) that mediate ligand recognition where function is contingent on binding a divalent cation at the metal ion dependent adhesion site (MIDAS). Ca2+ is reported to promote α1I but inhibit α2I ligand binding. We co-crystallized individual I-domains with MIDAS-bound Ca2+ and report structures at 1.4 and 2.15 Å resolution, respectively. Both structures are in the "closed" ligand binding conformation where Ca2+ induces minimal global structural changes. Comparisons with Mg2+-bound structures reveal Mg2+ and Ca2+ bind α1I in a manner sufficient to promote ligand binding. In contrast, Ca2+ is displaced in the α2I domain MIDAS by 1.4 Å relative to Mg2+ and unable to directly coordinate all MIDAS residues. We identified an E152-R192 salt bridge hypothesized to limit the flexibility of the α2I MIDAS, thus, reducing Ca2+ binding. A α2I E152A construct resulted in a 10,000-fold increase in Mg2+ and Ca2+ binding affinity while increasing binding to collagen ligands 20%. These data indicate the E152-R192 salt bridge is a key distinction in the molecular mechanism of differential ion binding of these two I domains.


Assuntos
Cálcio/metabolismo , Integrina alfa1/química , Integrina alfa1/metabolismo , Integrina alfa2/química , Integrina alfa2/metabolismo , Sequência de Aminoácidos , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...