Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Molecules ; 27(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35268756

RESUMO

Polytopic organic ligands with hydrazone moiety are at the forefront of new drug research among many others due to their unique and versatile functionality and ease of strategic ligand design. Quantum chemical calculations of these polyfunctional ligands can be carried out in silico to determine the thermodynamic parameters. In this study two new tritopic dihydrazide ligands, N'2, N'6-bis[(1E)-1-(thiophen-2-yl) ethylidene] pyridine-2,6-dicarbohydrazide (L1) and N'2, N'6-bis[(1E)-1-(1H-pyrrol-2-yl) ethylidene] pyridine-2,6-dicarbohydrazide (L2) were successfully prepared by the condensation reaction of pyridine-2,6-dicarboxylic hydrazide with 2-acetylthiophene and 2-acetylpyrrole. The FT-IR, 1H, and 13C NMR, as well as mass spectra of both L1 and L2, were recorded and analyzed. Quantum chemical calculations were performed at the DFT/B3LYP/cc-pvdz/6-311G+(d,p) level of theory to study the molecular geometry, vibrational frequencies, and thermodynamic properties including changes of ∆H, ∆S, and ∆G for both the ligands. The optimized vibrational frequency and (1H and 13C) NMR obtained by B3LYP/cc-pvdz/6-311G+(d,p) showed good agreement with experimental FT-IR and NMR data. Frontier molecular orbital (FMO) calculations were also conducted to find the HOMO, LUMO, and HOMO−LUMO gaps of the two synthesized compounds. To investigate the biological activities of the ligands, L1 and L2 were tested using in vitro bioassays against some Gram-negative and Gram-positive bacteria and fungus strains. In addition, molecular docking was used to study the molecular behavior of L1 and L2 against tyrosinase from Bacillus megaterium. The outcomes revealed that both L1 and L2 can suppress microbial growth of bacteria and fungi with variable potency. The antibacterial activity results demonstrated the compound L2 to be potentially effective against Bacillus megaterium with inhibition zones of 12 mm while the molecular docking study showed the binding energies for L1 and L2 to be −7.7 and −8.8 kcal mol−1, respectively, with tyrosinase from Bacillus megaterium.


Assuntos
Hidrazonas
2.
Dalton Trans ; (23): 2835-51, 2006 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-16751892

RESUMO

Flat, quantum dot like arrays of closely spaced, electron rich metal centres are seen as attractive subunits for device capability at the molecular level. Mn(II)9 grids, formed by self-assembly processes using 'tritopic' pyridine-2,6-dihydrazone ligands, provide easy and pre-programmable routes to such systems, and have been shown to exhibit a number of potentially useful physical properties, which could be utilized to generate bi-stable molecular based states. Their ability to form surface monolayers, which can be mapped by STM techniques, bodes well for their possible integration into nanometer scale electronic components of the future. This report highlights some new Mn(II)9 grids, with functionalized ligand sites, that may provide suitable anchor points to surfaces and also be potential donor sites capable of further grid elaboration. Structures, magnetic properties, electrochemical properties, surface studies on HOPG (highly ordered pyrolytic graphite), including the imaging of individual metal ion sites in the grid using CITS (current imaging tunneling spectroscopy) are discussed, in addition to an analysis of the photophysics of a stable mixed oxidation state [Mn(III)4Mn(II)5] grid. The grid physical properties as a whole are assessed in the light of reasonable approaches to the use of such molecules as nanometer scale devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...