Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Am Chem Soc ; 132(33): 11539-51, 2010 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-20666494

RESUMO

Pyridinium and its substituted derivatives are effective and stable homogeneous electrocatalysts for the aqueous multiple-electron, multiple-proton reduction of carbon dioxide to products such as formic acid, formaldehyde, and methanol. Importantly, high faradaic yields for methanol have been observed in both electrochemical and photoelectrochemical systems at low reaction overpotentials. Herein, we report the detailed mechanism of pyridinium-catalyzed CO(2) reduction to methanol. At metal electrodes, formic acid and formaldehyde were observed to be intermediate products along the pathway to the 6e(-)-reduced product of methanol, with the pyridinium radical playing a role in the reduction of both intermediate products. It has previously been thought that metal-derived multielectron transfer was necessary to achieve highly reduced products such as methanol. Surprisingly, this simple organic molecule is found to be capable of reducing many different chemical species en route to methanol through six sequential electron transfers instead of metal-based multielectron transfer. We show evidence for the mechanism of the reduction proceeding through various coordinative interactions between the pyridinium radical and carbon dioxide, formaldehyde, and related species. This suggests an inner-sphere-type electron transfer from the pyridinium radical to the substrate for various mechanistic steps where the pyridinium radical covalently binds to intermediates and radical species. These mechanistic insights should aid the development of more efficient and selective catalysts for the reduction of carbon dioxide to the desired products.


Assuntos
Dióxido de Carbono/química , Elétrons , Metanol/síntese química , Catálise , Formaldeído/química , Cinética , Metanol/química , Estrutura Molecular , Oxirredução , Compostos de Piridínio/química , Teoria Quântica
3.
Langmuir ; 23(22): 11281-8, 2007 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17900157

RESUMO

The ability of dissolved potassium monocarboxylate salts to produce surface passivation and to inhibit aqueous corrosion of copper was studied. The electrochemical measurements indicate that the inhibiting efficiency of these compounds, with a general formula Cn-1H2n-1COOK or CnK (n=3...12), is dependent on the hydrocarbon chain length. The inhibiting efficiency was higher for a longer hydrocarbon chain of n-alkanoic acid. The degree of copper protection was found to increase with an increase in n-alkanoic acid potassium salt concentration; the optimum concentration of potassium dodecanoate (C12K) in sulfate solutions was found to be 0.07 M. The protective layers formed at the copper surface subsequent to exposure in various n-alkanoic acid potassium salt solutions were characterized by contact angle measurements, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared reflection spectroscopy. Pronounced copper protection was attributed to the growth of a protective film on the copper surface, containing both copper oxides and copper carboxylate compounds. It is suggested that the organic molecules enhance copper protection by covering copper oxides with a thin and dense organic layer, which prevents water molecules or aggressive anions from interacting with the copper surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...