Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293386

RESUMO

Multidrug-resistant bacteria represent a global health and economic burden that urgently calls for new technologies to combat bacterial antimicrobial resistance. Here, we developed novel nanocomposites (NCPs) based on chitosan that display different degrees of acetylation (DAs), and conjugated polymer cyano-substituted poly(p-phenylene vinylene) (CNPPV) as an alternative approach to inactivate Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria. Chitosan's structure was confirmed through FT-Raman spectroscopy. Bactericidal and photobactericidal activities of NCPs were tested under dark and blue-light irradiation conditions, respectively. Hydrodynamic size and aqueous stability were determined by DLS, zeta potential (ZP) and time-domain NMR. TEM micrographs of NCPs were obtained, and their capacity of generating reactive oxygen species (ROS) under blue illumination was also characterized. Meaningful variations on ZP and relaxation time T2 confirmed successful physical attachment of chitosan/CNPPV. All NCPs exhibited a similar and shrunken spherical shape according to TEM. A lower DA is responsible for driving higher bactericidal performance alongside the synergistic effect from CNPPV, lower nanosized distribution profile and higher positive charged surface. ROS production was proportionally found in NCPs with and without CNPPV by decreasing the DA, leading to a remarkable photobactericidal effect under blue-light irradiation. Overall, our findings indicate that chitosan/CNPPV NCPs may constitute a valuable asset for the development of innovative strategies for inactivation and/or photoinactivation of bacteria.


Assuntos
Quitosana , Nanocompostos , Humanos , Quitosana/farmacologia , Quitosana/química , Espécies Reativas de Oxigênio/farmacologia , Staphylococcus aureus , Escherichia coli , Nanocompostos/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias
2.
Front Bioeng Biotechnol ; 10: 932877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875499

RESUMO

Conjugated polymers are increasingly exploited for biomedical applications. In this work, we explored the optical characteristics of conjugated polymers of variable chemical structures at multiple levels relevant to biological interfacing, from fluorescence yield to their influence on cellular membrane potential. We systematically compared the performance of conjugated polymer as cast thin films and as nanoparticles stabilized with amphiphilic polyethylene glycol-poly lactic acid-co-glycolic acid (PEG-PLGA). We assessed in both the dark and under illumination the stability of key optoelectronic properties in various environments, including air and biologically relevant physiological saline solutions. We found that photoreduction of oxygen correlates with nanoparticle and film degradation in physiologically relevant media. Using patch-clamp recordings in cell lines and primary neurons, we identified two broad classes of membrane potential response, which correspond to photosensitizer- and photothermal-mediated effects. Last, we introduced a metric named OED50 (optical energy for 50% depolarization), which conveys the phototoxic potency of a given agent and thereby its operational photo-safety profile.

3.
Chemistry ; 26(14): 3173-3180, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32083355

RESUMO

Development of novel bioimaging materials that exhibit organelle specific accumulation continues to be at the forefront of research interests and efforts. Among the various subcellular organelles, mitochondria, which are found in the cytoplasm of eukaryotic cells, are of particular interest in relation to their vital function. To date, most molecular probes that target mitochondria utilise delocalised lipophilic cations such as triphenylphosphonium and pyridinium. However, the use of such charged motifs is known to be detrimental to the working function of the mitochondrial transmembrane potential and there remains a strong case for development of neutral mitochondrial fluorescent probes. Herein, we demonstrate for the first time the exploitation of diketopyrrolopyrrole-based chemistries for the realisation of a neutral fluorescent probe that exhibits organelle specific accumulation within the mitochondria at the nanomolar level. The synthesised probe, which bears a neutral triphenylphosphine oxide moiety, exhibits a large Stokes shift and high fluorescence quantum yield in water, both highly sought-after properties in the development of bioimaging agents. In vitro studies reveal no interference with cell metabolism when tested for the human MCF7 breast cancer cell and nanomolar subcellular organelle colocalisation with commercially available mitochondrial staining agent Mitotracker Red. In light of its novelty, neutral structure and the preferential accumulation at nanomolar concentrations we anticipate this work to be of significant interest for the increasingly larger community devoted to the realisation of neutral mitochondrial selective systems and more widely to those engaged in the rational development of superior organic architectures in the biological field.


Assuntos
Corantes Fluorescentes/química , Cetonas/química , Mitocôndrias/metabolismo , Compostos Organofosforados/química , Pirróis/química , Técnicas Biossensoriais , Humanos , Luz , Células MCF-7 , Potencial da Membrana Mitocondrial/fisiologia , Estrutura Molecular , Imagem Óptica , Compostos Orgânicos/química , Relação Estrutura-Atividade
4.
Biomater Sci ; 8(5): 1329-1344, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-31912808

RESUMO

Combinations of conventional chemotherapeutics with unconventional anticancer agents such as reactive oxygen and nitrogen species may offer treatment benefits for cancer therapies. Here we report a novel polymeric platform combining the delivery of Doxorubicin (DOXO) with the light-regulated release of nitric oxide (NO). An amphiphilic block-copolymer (P1) was designed and synthesized as the drug carrier, with pendant amine groups to attach DOXO via a urea linkage and a NO photodonor (NOPD) activable by visible light. The two grafted-copolymers (P1-DOXO and P1-NOPD) self-assembled via solvent displacement methods into nanoparticles (NPs), containing both therapeutic components (NP1) and, for comparison, the individual NOPD (NP2) and DOXO (NP3). All the NPs were fully characterized in terms of physicochemical, photochemical and photophysical properties. These experiments demonstrated that integration of the NOPD within the polymeric scaffold enhanced the NO photoreleasing efficiency when compared with the free NOPD, and that the proximity to DOXO on the polymer chains did not significantly affect the enhanced photochemical performance. Internalization of the NPs into lung, intestine, and skin cancer cell lines was investigated after co-formulation with Cy5 fluorescent tagged polymers, and cytotoxicity of the NPs against the same panel of cell lines was assessed under dark and light conditions. The overall results demonstrate effective cell internalization of the NPs and a notable enhancement in killing activity of the dual-action therapeutic NP1 when compared with NP2, NP3 and the free DOXO, respectively. This suggests that the combination of DOXO with photoregulated NO release, achieved through the mixed formulation strategy of tailored polymer conjugate NPs, may open new treatment modalities based on the use of NO to improve cancer therapies.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Nanopartículas/química , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Polímeros/química , Antibióticos Antineoplásicos/síntese química , Antibióticos Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/síntese química , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Doadores de Óxido Nítrico/síntese química , Doadores de Óxido Nítrico/química , Processos Fotoquímicos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...