Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 10(1): 306, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942768

RESUMO

RNA-binding proteins are multifunctional molecules impacting on multiple steps of gene regulation. Gemin5 was initially identified as a member of the survival of motor neurons (SMN) complex. The protein is organized in structural and functional domains, including a WD40 repeats domain at the N-terminal region, a tetratricopeptide repeat (TPR) dimerization module at the central region, and a non-canonical RNA-binding site at the C-terminal end. The TPR module allows the recruitment of the endogenous Gemin5 protein in living cells and the assembly of a dimer in vitro. However, the biological relevance of Gemin5 oligomerization is not known. Here we interrogated the Gemin5 interactome focusing on oligomerization-dependent or independent regions. We show that the interactors associated with oligomerization-proficient domains were primarily annotated to ribosome, splicing, translation regulation, SMN complex, and RNA stability. The presence of distinct Gemin5 protein regions in polysomes highlighted differences in translation regulation based on their oligomerization capacity. Furthermore, the association with native ribosomes and negative regulation of translation was strictly dependent on both the WD40 repeats domain and the TPR dimerization moiety, while binding with the majority of the interacting proteins, including SMN, Gemin2, and Gemin4, was determined by the dimerization module. The loss of oligomerization did not perturb the predominant cytoplasmic localization of Gemin5, reinforcing the cytoplasmic functions of this essential protein. Our work highlights a distinctive role of the Gemin5 domains for its functions in the interaction with members of the SMN complex, ribosome association, and RBP interactome.

2.
Comput Struct Biotechnol J ; 20: 6182-6191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420152

RESUMO

Gemin5 is a multifunctional RNA binding protein (RBP) organized in domains with a distinctive structural organization. The protein is a hub for several protein networks performing diverse RNA-dependent functions including regulation of translation, and recognition of small nuclear RNAs (snRNAs). Here we sought to identify the presence of phosphoresidues on the C-terminal half of Gemin5, a region of the protein that harbors a tetratricopeptide repeat (TPR)-like dimerization domain and a non-canonical RNA binding site (RBS1). We identified two phosphoresidues in the purified protein: P-T897 in the dimerization domain and P-T1355 in RBS1. Replacing T897 and T1355 with alanine led to decreased translation, and mass spectrometry analysis revealed that mutation T897A strongly abrogates the association with cellular proteins related to the regulation of translation. In contrast, the phosphomimetic substitutions to glutamate partially rescued the translation regulatory activity. The structural analysis of the TPR dimerization domain indicates that local rearrangements caused by phosphorylation of T897 affect the conformation of the flexible loop 2-3, and propagate across the dimerization interface, impacting the position of the C-terminal helices and the loop 12-13 shown to be mutated in patients with neurological disorders. Computational analysis of the potential relationship between post-translation modifications and currently known pathogenic variants indicates a lack of overlapping of the affected residues within the functional domains of the protein and provides molecular insights for the implication of the phosphorylated residues in translation regulation.

3.
Nat Commun ; 13(1): 5166, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056043

RESUMO

Gemin5 in the Survival Motor Neuron (SMN) complex serves as the RNA-binding protein to deliver small nuclear RNAs (snRNAs) to the small nuclear ribonucleoprotein Sm complex via its N-terminal WD40 domain. Additionally, the C-terminal region plays an important role in regulating RNA translation by directly binding to viral RNAs and cellular mRNAs. Here, we present the three-dimensional structure of the Gemin5 C-terminal region, which adopts a homodecamer architecture comprised of a dimer of pentamers. By structural analysis, mutagenesis, and RNA-binding assays, we find that the intact pentamer/decamer is critical for the Gemin5 C-terminal region to bind cognate RNA ligands and to regulate mRNA translation. The Gemin5 high-order architecture is assembled via pentamerization, allowing binding to RNA ligands in a coordinated manner. We propose a model depicting the regulatory role of Gemin5 in selective RNA binding and translation. Therefore, our work provides insights into the SMN complex-independent function of Gemin5.


Assuntos
RNA Nuclear Pequeno , Ribonucleoproteínas Nucleares Pequenas , Ligantes , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN/metabolismo
4.
Cell Mol Life Sci ; 79(9): 490, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987821

RESUMO

Selective translation allows to orchestrate the expression of specific proteins in response to different signals through the concerted action of cis-acting elements and RNA-binding proteins (RBPs). Gemin5 is a ubiquitous RBP involved in snRNP assembly. In addition, Gemin5 regulates translation of different mRNAs through apparently opposite mechanisms of action. Here, we investigated the differential function of Gemin5 in translation by identifying at a genome-wide scale the mRNAs associated with polysomes. Among the mRNAs showing Gemin5-dependent enrichment in polysomal fractions, we identified a selective enhancement of specific transcripts. Comparison of the targets previously identified by CLIP methodologies with the polysome-associated transcripts revealed that only a fraction of the targets was enriched in polysomes. Two different subsets of these mRNAs carry unique cis-acting regulatory elements, the 5' terminal oligopyrimidine tracts (5'TOP) and the histone stem-loop (hSL) structure at the 3' end, respectively, encoding ribosomal proteins and histones. RNA-immunoprecipitation (RIP) showed that ribosomal and histone mRNAs coprecipitate with Gemin5. Furthermore, disruption of the TOP motif impaired Gemin5-RNA interaction, and functional analysis showed that Gemin5 stimulates translation of mRNA reporters bearing an intact TOP motif. Likewise, Gemin5 enhanced hSL-dependent mRNA translation. Thus, Gemin5  promotes polysome association of only a subset of its targets, and as a consequence, it favors translation of the ribosomal and the histone mRNAs. Together, the results presented here unveil Gemin5 as a novel translation regulator of mRNA subsets encoding proteins involved in fundamental cellular processes.


Assuntos
Histonas , RNA , Histonas/genética , Histonas/metabolismo , Polirribossomos/metabolismo , Biossíntese de Proteínas , RNA/metabolismo , RNA Mensageiro/metabolismo
5.
Life Sci Alliance ; 5(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393353

RESUMO

Dysfunction of RNA-binding proteins is often linked to a wide range of human disease, particularly with neurological conditions. Gemin5 is a member of the survival of the motor neurons (SMN) complex, a ribosome-binding protein and a translation reprogramming factor. Recently, pathogenic mutations in Gemin5 have been reported, but the functional consequences of these variants remain elusive. Here, we report functional and structural deficiencies associated with compound heterozygosity variants within the Gemin5 gene found in patients with neurodevelopmental disorders. These clinical variants are located in key domains of Gemin5, the tetratricopeptide repeat (TPR)-like dimerization module and the noncanonical RNA-binding site 1 (RBS1). We show that the TPR-like variants disrupt protein dimerization, whereas the RBS1 variant confers protein instability. All mutants are defective in the interaction with protein networks involved in translation and RNA-driven pathways. Importantly, the TPR-like variants fail to associate with native ribosomes, hampering its involvement in translation control and establishing a functional difference with the wild-type protein. Our study provides insights into the molecular basis of disease associated with malfunction of the Gemin5 protein.


Assuntos
Doenças do Sistema Nervoso , Proteínas de Ligação a RNA , Ribossomos , Humanos , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Proteínas do Complexo SMN/genética , Proteínas do Complexo SMN/metabolismo
6.
FEBS Open Bio ; 12(6): 1125-1141, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35313388

RESUMO

The genome of viruses classified as picornaviruses consists of a single monocistronic positive strand RNA. The coding capacity of these RNA viruses is rather limited, and thus, they rely on the cellular machinery for their viral replication cycle. Upon the entry of the virus into susceptible cells, the viral RNA initially competes with cellular mRNAs for access to the protein synthesis machinery. Not surprisingly, picornaviruses have evolved specialized strategies that successfully allow the expression of viral gene products, which we outline in this review. The main feature of all picornavirus genomes is the presence of a heavily structured RNA element on the 5´UTR, referred to as an internal ribosome entry site (IRES) element, which directs viral protein synthesis as well and, consequently, triggers the subsequent steps required for viral replication. Here, we will summarize recent studies showing that picornavirus IRES elements consist of a modular structure, providing sites of interaction for ribosome subunits, eIFs, and a selective group of RNA-binding proteins.


Assuntos
Picornaviridae , Sítios Internos de Entrada Ribossomal/genética , Picornaviridae/genética , Picornaviridae/metabolismo , RNA Mensageiro/genética , RNA Viral/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...