Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neoplasia ; 57: 101051, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39270598

RESUMO

The interaction between gliomas and the immune system is poorly understood and thus hindering development of effective immunotherapies for glioma patients. The immune response is highly variable during tumor development, and affected by therapies such as surgery, radiation, and chemotherapy. Currently, analysis of these local changes is difficult due to poor accessibility of the tumor and high-morbidity of sampling. In this study, we developed a model for repeat-biopsy in mice to study these local immunological changes over time. Using fine needle biopsy we were able to safely and repeatedly collect cells from intracranial tumors in mice. Ultra-fast cycling technology (FAST) was used for multi-cycle immunofluorescence of retrieved cells, and provided insights in the changing immune response over time. The combination of these techniques can be utilized to study changes in the immune response in glioma or other intracranial diseases over time, and in response to treatment within the same animal.

2.
Cancer Cell ; 42(9): 1507-1527.e11, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39255775

RESUMO

Glioblastoma recurrence is currently inevitable despite extensive standard-of-care treatment. In preclinical studies, an alternative strategy of targeting tumor-associated macrophages and microglia through CSF-1R inhibition was previously found to regress established tumors and significantly increase overall survival. However, recurrences developed in ∼50% of mice in long-term studies, which were consistently associated with fibrotic scars. This fibrotic response is observed following multiple anti-glioma therapies in different preclinical models herein and in patient recurrence samples. Multi-omics analyses of the post-treatment tumor microenvironment identified fibrotic areas as pro-tumor survival niches that encapsulated surviving glioma cells, promoted dormancy, and inhibited immune surveillance. The fibrotic treatment response was mediated by perivascular-derived fibroblast-like cells via activation by transforming growth factor ß (TGF-ß) signaling and neuroinflammation. Concordantly, combinatorial inhibition of these pathways inhibited treatment-associated fibrosis, and significantly improved survival in preclinical trials of anti-colony-stimulating factor-1 receptor (CSF-1R) therapy.


Assuntos
Neoplasias Encefálicas , Fibrose , Glioblastoma , Recidiva Local de Neoplasia , Microambiente Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Animais , Humanos , Camundongos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Microambiente Tumoral/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Fator de Crescimento Transformador beta/metabolismo
3.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948851

RESUMO

The interaction between gliomas and the immune system is poorly understood and thus hindering development of effective immunotherapies for glioma patients. The immune response is highly variable during tumor development, and affected by therapies such as surgery, radiation, and chemotherapy. Currently, analysis of these local changes is difficult due to poor accessibility of the tumor and high-morbidity of sampling. In this study, we developed a model for repeat-biopsy in mice to study these local immunological changes over time. Using fine needle biopsy we were able to safely and repeatedly collect cells from intracranial tumors in mice. Ultra-fast cycling technology (FAST) was used for multi-cycle immunofluorescence of retrieved cells, and provided insights in the changing immune response over time. The combination of these techniques can be utilized to study changes in the immune response in glioma or other intracranial diseases over time, and in response to treatment within the same animal.

4.
Cells ; 13(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38920629

RESUMO

The world of cancer treatment is evolving rapidly and has improved the prospects of many cancer patients. Yet, there are still many cancers where treatment prospects have not (or hardly) improved. Glioblastoma is the most common malignant primary brain tumor, and even though it is sensitive to many chemotherapeutics when tested under laboratory conditions, its clinical prospects are still very poor. The blood-brain barrier (BBB) is considered at least partly responsible for the high failure rate of many promising treatment strategies. We describe the workings of the BBB during healthy conditions and within the glioblastoma environment. How the BBB acts as a barrier for therapeutic options is described as well as various approaches developed and tested for passing or opening the BBB, with the ultimate aim to allow access to brain tumors and improve patient perspectives.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Sistemas de Liberação de Medicamentos , Glioblastoma , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Animais
5.
Mol Ther Oncolytics ; 25: 121-136, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35572197

RESUMO

Non-coding RNAs, including microRNAs (miRNAs), support the progression of glioma. miR-21 is a small, non-coding transcript involved in regulating gene expression in multiple cellular pathways, including the regulation of proliferation. High expression of miR-21 has been shown to be a major driver of glioma growth. Manipulating the expression of miRNAs is a novel strategy in the development of therapeutics in cancer. In this study we aimed to target miR-21. Using CRISPR genome-editing technology, we disrupted the miR-21 coding sequences in glioma cells. Depletion of this miRNA resulted in the upregulation of many downstream miR-21 target mRNAs involved in proliferation. Phenotypically, CRISPR-edited glioma cells showed reduced migration, invasion, and proliferation in vitro. In immunocompetent mouse models, miR-21 knockout tumors showed reduced growth resulting in an increased overall survival. In summary, we show that by knocking out a key miRNA in glioma, these cells have decreased proliferation capacity both in vitro and in vivo. Overall, we identified miR-21 as a potential target for CRISPR-based therapeutics in glioma.

6.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540859

RESUMO

One of the essential functions of microglia is to continuously sense changes in their environment and adapt to those changes. For this purpose, they use a set of genes termed the sensome. This sensome is comprised of the most abundantly expressed receptors on the surface of microglia. In this study, we updated previously identified mouse microglial sensome by incorporating an additional published RNAseq dataset into the data-analysis pipeline. We also identified members of the human microglial sensome using two independent human microglia RNAseq data sources. Using both the mouse and human microglia sensomes, we identified a key set of genes conserved between the mouse and human microglial sensomes as well as some differences between the species. We found a key set of 57 genes to be conserved in both mouse and human microglial sensomes. We define these genes as the "microglia core sensome". We then analyzed expression of genes in this core sensome in five different datasets from two neurodegenerative disease models at various stages of the diseases and found that, overall, changes in the level of expression of microglial sensome genes are specific to the disease or condition studied. Our results highlight the relevance of data generated in mice for understanding the biology of human microglia, but also stress the importance of species-specific gene sets for the investigation of diseases involving microglia. Defining this microglial specific core sensome may help identify pathological changes in microglia in humans and mouse models of human disease.


Assuntos
Microglia/metabolismo , Receptores de Superfície Celular/genética , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Córtex Cerebral/metabolismo , Conjuntos de Dados como Assunto , Expressão Gênica , Ontologia Genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA-Seq , Receptores de Superfície Celular/análise , Especificidade da Espécie
7.
Trends Neurosci ; 44(3): 215-226, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33234347

RESUMO

Glioblastoma the most aggressive form of brain cancer, comprises a complex mixture of tumor cells and nonmalignant stromal cells, including neurons, astrocytes, microglia, infiltrating monocytes/macrophages, lymphocytes, and other cell types. All nonmalignant cells within and surrounding the tumor are affected by the presence of glioblastoma. Astrocytes use multiple modes of communication to interact with neighboring cells. Extracellular vesicle-directed intercellular communication has been found to be an important component of signaling between astrocytes and glioblastoma in tumor progression. In this review, we focus on recent findings on extracellular vesicle-mediated bilateral crosstalk, between glioblastoma cells and astrocytes, highlighting the protumor and antitumor roles of astrocytes in glioblastoma development.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Astrócitos , Comunicação Celular , Humanos
8.
Front Mol Biosci ; 7: 554649, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33282910

RESUMO

Introduction: Glioma cells exert influence over the tumor-microenvironment in part through the release of extracellular vesicles (EVs), membrane-enclosed structures containing proteins, lipids, and RNAs. In this study, we evaluated the function of Ras-associated protein 27a (Rab27a) in glioma and evaluated the feasibility of assessing its role in EV release in glioma cells in vitro and in vivo. Methods: Rab27a was knocked down via a short hairpin RNA (shRNA) stably expressed in mouse glioma cell line GL261, with a scrambled shRNA as control. EVs were isolated by ultracentrifugation and quantified with Nanoparticle Tracking Analysis (NTA) and Tunable Resistive Pulse Sensing (TRPS). CellTiter-Glo viability assays and cytokine arrays were used to evaluate the impact of Rab27a knockdown. GL261.shRab27a cells and GL261.shControl were implanted into the left striatum of eight mice to assess tumor growth and changes in the tumor microenvironment. Results: Knockdown of Rab27a in GL261 glioma cells decreased the release of small EVs isolated at 100,000 × g in vitro (p = 0.005), but not the release of larger EVs, isolated at 10,000 × g. GL261.shRab27a cells were less viable compared to the scramble control in vitro (p < 0.005). A significant increase in CCL2 expression in shRab27a GL261 cells was also observed (p < 0.001). However, in vivo there was no difference in tumor growth or overall survival between the two groups, while shRab27a tumors showed lower proliferation at the tumor borders. Decreased infiltration of IBA1 positive macrophages and microglia, but not FoxP3 positive regulatory T cells was observed. Conclusion: Rab27a plays an important role in the release of small EVs from glioma cells, and also in their viability and expression of CCL2 in vitro. As interference in Rab27a expression influences glioma cell viability and expression profiles, future studies should be cautious in using the knockdown of Rab27a as a means of studying the role of small EVs in glioma growth.

9.
Sci Adv ; 6(17): eaax9856, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32494628

RESUMO

Cytomegalovirus (CMV) is an important cause of morbidity and mortality in the immunocompromised host. In transplant recipients, a variety of clinically important "indirect effects" are attributed to immune modulation by CMV, including increased mortality from fungal disease, allograft dysfunction and rejection in solid organ transplantation, and graft-versus-host-disease in stem cell transplantation. Monocytes, key cellular targets of CMV, are permissive to primary, latent and reactivated CMV infection. Here, pairing unbiased bulk and single cell transcriptomics with functional analyses we demonstrate that human monocytes infected with CMV do not effectively phagocytose fungal pathogens, a functional deficit which occurs with decreased expression of fungal recognition receptors. Simultaneously, CMV-infected monocytes upregulate antiviral, pro-inflammatory chemokine, and inflammasome responses associated with allograft rejection and graft-versus-host disease. Our study demonstrates that CMV modulates both immunosuppressive and immunostimulatory monocyte phenotypes, explaining in part, its paradoxical "indirect effects" in transplantation. These data could provide innate immune targets for the stratification and treatment of CMV disease.

10.
Sci Rep ; 10(1): 9898, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555306

RESUMO

Monocytes, macrophages and microglia make up a large part of the glioma environment and have an important role in maintaining and propagating glioma progression. Targeting these cells to inhibit their tumor-promoting effect and reprogramming them into an anti-tumor phenotype is a potential therapeutic approach for glioma. In this study we analyzed the transcriptomes of eight different monocyte subgroups derived from the brain and the blood of glioma-bearing mice. We compared the expression profile of blood-derived monocytes versus tumor-infiltrating monocytes and found increased expression of both pro- and anti-inflammatory pathways in tumor infiltrating monocytes. To help disseminate these datasets, we created a user-friendly web-based tool accessible at www.glioma-monocytes.com. This tool can be used for validation purposes and to elucidate gene expression profiles of tumor-interacting monocytes and macrophages as well as blood-derived circulating monocytes. This tool can also be used to identify new markers and targets for therapy in these different cell populations.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Macrófagos/citologia , Monócitos/citologia , Interface Usuário-Computador , Animais , Biomarcadores/metabolismo , Neoplasias Encefálicas/imunologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Bases de Dados Factuais , Modelos Animais de Doenças , Glioma/imunologia , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/metabolismo , Transplante Homólogo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA