Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 41(10): 2479-2487, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35866467

RESUMO

Despite the propensity of waterfowl species to readily accumulate anthropogenic contaminants within polluted environments, few studies have examined bioaccumulation rates over time when entering such a contaminated site. We examined mercury (Hg) and radiocesium (137 Cs) bioaccumulation over time in two waterfowl species released into a wetland system containing legacy contamination on the US Department of Energy's Savannah River Site in South Carolina. Released birds were collected at select time intervals over an exposure period of 94 days. We quantified total Hg concentrations in blood, muscle, and liver tissues, and 137 Cs activity in whole-body and muscle tissues. The relationship between the contaminant burdens of different body tissue types was examined over time. Likely a result of microhabitat selection, mallards in our study readily accumulated both Hg and 137 Cs at consistent rates over time within our study system, while ring-neck ducks did not. The findings demonstrated that whole blood can be used as a robust, nondestructive sampling alternative to estimate Hg burdens within muscle and liver, and whole-body 137 Cs activity is a good predictor of muscle burdens. Understanding such bioaccumulation information in waterfowl is useful for the assessment of the potential health risk in wildlife, as well as being important for human risk assessment toward the consumption of popular game species. Environ Toxicol Chem 2022;41:2479-2487. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Mercúrio , Bioacumulação , Radioisótopos de Césio/análise , Monitoramento Ambiental , Humanos , Mercúrio/análise , Rios
2.
Environ Toxicol Chem ; 40(3): 717-726, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32164037

RESUMO

Studies of the toxicity of poly- and perfluoroalkyl substances (PFAS) on amphibians, especially after metamorphosis, are limited. We examined effects of dermal PFAS exposure (30 d) on survival and growth of juvenile American toads (Anaxyrus americanus), eastern tiger salamanders (Ambystoma tigrinum), and northern leopard frogs (Rana pipiens). Chemicals included perfluorooctanoic acid, perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), and 6:2 fluorotelomer sulfonate (6:2 FTS) at 0, 80, 800, or 8000 ppb on a moss dry weight basis. Exposure to PFAS influenced final snout-vent length (SVL) and scaled mass index (SMI), a measure of relative body condition. Observed effects depended on species and chemical, but not concentration. Anurans exposed to PFOS, PFHxS (frogs only), and 6:2 FTS demonstrated reduced SVL versus controls, whereas salamanders exposed to 6:2 FTS showed increased SVL. Frogs exposed to PFHxS and 6:2 FTS and toads exposed to PFOS had increased SMI compared to controls; salamanders did not demonstrate effects. Concentrations of 6:2 FTS in substrate decreased substantially by 30 d, likely driven by microbial action. Perfluorooctane sulfonate had notable biota-sediment accumulation factors, but was still <1. Although a no-observable-effect concentration could not generally be determined, the lowest-observable-effect concentration was 50 to 120 ppb. Survival was not affected. The present study demonstrates that PFAS bioaccumulation from dermal exposures and sublethal effects are dependent on species, chemical, and focal trait. Environ Toxicol Chem 2021;40:717-726. © 2020 SETAC.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ácidos Alcanossulfônicos/toxicidade , Animais , Bufonidae , Fluorocarbonos/toxicidade , Rana pipiens , Urodelos
3.
Ecotoxicol Environ Saf ; 178: 137-145, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31002968

RESUMO

Poly- and perfluoroalkyl substances (PFAS) are ubiquitous contaminants that can bioaccumulate in aquatic taxa. Amphibians are particularly vulnerable to contaminants and sensitive to endocrine disruptors during their aquatic larval stage. However, few studies have explored PFAS uptake rates in amphibians, which is critical for designing ecotoxicology studies and assessing the potential for bioaccumulation. Uptake rates of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were measured for larval northern leopard frogs (Rana pipiens), American toads (Anaxyrus americanus), and eastern tiger salamanders (Ambystoma tigrinum) during a 240-h exposure to 10 and 1000 µg/L concentrations. We measured body burden and calculated bioconcentration factor (BCF) every 48 h during the experiments. For all species and exposures, body burdens often reached steady state within 48-96 h of exposure. Steady-state body burdens for PFOA and PFOS ranged from 3819 to 16,481 ng/g dry weight (BCF = 0.46-2.5) and 6955-489,958 ng/g dry weight (47-259 BCFs), respectively. Therefore, PFAS steady state occurs rapidly in the larval amphibians we studied and particularly for PFOS. This result reflects a high potential for PFAS trophic transfer because amphibians are often low in trophic position and are important prey for many aquatic and terrestrial species.


Assuntos
Ácidos Alcanossulfônicos/metabolismo , Bufonidae/metabolismo , Caprilatos/metabolismo , Fluorocarbonos/metabolismo , Larva/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Carga Corporal (Radioterapia) , Ecotoxicologia , Cadeia Alimentar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...