Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 929: 175111, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35738450

RESUMO

5α-Tetrahydrocorticosterone (5αTHB) is an effective topical anti-inflammatory agent in mouse, with less propensity to cause skin thinning and impede new blood vessel growth compared with corticosterone. Its anti-inflammatory effects were not prevented by RU38486, a glucocorticoid receptor antagonist, suggesting alternative mechanisms. The hypothesis that 5αTHB directly inhibits angiogenesis to a lesser extent than hydrocortisone was tested, focussing on glucocorticoid receptor mediated actions. New vessel growth from aortae from C57BL/6 male mice was monitored in culture, in the presence of 5αTHB, hydrocortisone (mixed glucocorticoid/mineralocorticoid receptor agonist) or the selective glucocorticoid receptor agonist dexamethasone. Transcript profiles were studied, as was the role of the glucocorticoid receptor, using the antagonist, RU38486. Ex vivo, 5αTHB suppressed vessel growth from aortic rings, but was less potent than hydrocortisone (EC50 2512 nM 5αTHB, versus 762 nM hydrocortisone). In contrast to conventional glucocorticoids, 5αTHB did not alter expression of genes related to extracellular matrix integrity or inflammatory signalling, but caused a small increase in Per1 transcript, and decreased transcript abundance of Pecam1 gene. RU38486 did not antagonise the residual effects of 5αTHB to suppress vessel growth or regulate gene expression, but modified effects of dexamethasone. 5αTHB did not alter expression of glucocorticoid-regulated genes Fkbp51 and Hsd11b1, unlike hydrocortisone and dexamethasone. In conclusion, compared with hydrocortisone, 5αTHB exhibits limited suppression of angiogenesis, at least directly in blood vessels and probably independent of the glucocorticoid receptor. Discriminating the mechanisms employed by 5αTHB may provide the basis for the development of novel safer anti-inflammatory drugs for topical use.


Assuntos
Corticosterona , Glucocorticoides , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Corticosterona/análogos & derivados , Corticosterona/farmacologia , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Hidrocortisona/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mifepristona/farmacologia , Neovascularização Patológica , Receptores de Glucocorticoides/metabolismo
2.
PLoS One ; 13(2): e0192746, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29447208

RESUMO

Glucocorticoids are potent inhibitors of angiogenesis in the rodent in vivo and in vitro but the mechanism by which this occurs has not been determined. Administration of glucocorticoids is used to treat a number of conditions in horses but the angiogenic response of equine vessels to glucocorticoids and, therefore, the potential role of glucocorticoids in pathogenesis and treatment of equine disease, is unknown. This study addressed the hypothesis that glucocorticoids would be angiostatic both in equine and murine blood vessels.The mouse aortic ring model of angiogenesis was adapted to assess the effects of cortisol in equine vessels. Vessel rings were cultured under basal conditions or exposed to: foetal bovine serum (FBS; 3%); cortisol (600 nM), cortisol (600nM) plus FBS (3%), cortisol (600nM) plus either the glucocorticoid receptor antagonist RU486 or the mineralocorticoid receptor antagonist spironolactone. In murine aortae cortisol inhibited and FBS stimulated new vessel growth. In contrast, in equine blood vessels FBS alone had no effect but cortisol alone, or in combination with FBS, dramatically increased new vessel growth compared with controls. This effect was blocked by glucocorticoid receptor antagonism but not by mineralocorticoid antagonism. The transcriptomes of murine and equine angiogenesis demonstrated cortisol-induced down-regulation of inflammatory pathways in both species but up-regulation of pro-angiogenic pathways selectively in the horse. Genes up-regulated in the horse and down-regulated in mice were associated with the extracellular matrix. These data call into question our understanding of glucocorticoids as angiostatic in every species and may be of clinical relevance in the horse.


Assuntos
Doenças dos Cavalos/fisiopatologia , Hidrocortisona/farmacologia , Inflamação/metabolismo , Neovascularização Patológica/prevenção & controle , Inibidores da Angiogênese , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Cavalos , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Mifepristona/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Especificidade da Espécie , Transcriptoma
3.
Biochem Pharmacol ; 129: 73-84, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28131845

RESUMO

Use of topical glucocorticoid for inflammatory skin conditions is limited by systemic and local side-effects. This investigation addressed the hypothesis that topical 5α-tetrahydrocorticosterone (5αTHB, a corticosterone metabolite) inhibits dermal inflammation without affecting processes responsible for skin thinning and impaired wound healing. The topical anti-inflammatory properties of 5αTHB were compared with those of corticosterone in C57Bl/6 male mice with irritant dermatitis induced by croton oil, whereas its effects on angiogenesis, inflammation, and collagen deposition were investigated by subcutaneous sponge implantation. 5αTHB decreased dermal swelling and total cell infiltration associated with dermatitis similarly to corticosterone after 24h, although at a five fold higher dose, but in contrast did not have any effects after 6h. Pre-treatment with the glucocorticoid receptor antagonist RU486 attenuated the effect of corticosterone on swelling at 24h, but not that of 5αTHB. After 24h 5αTHB reduced myeloperoxidase activity (representative of neutrophil infiltration) to a greater extent than corticosterone. At equipotent anti-inflammatory doses 5αTHB suppressed angiogenesis to a limited extent, unlike corticosterone which substantially decreased angiogenesis compared to vehicle. Furthermore, 5αTHB reduced only endothelial cell recruitment in sponges whereas corticosterone also inhibited smooth muscle cell recruitment and decreased transcripts of angiogenic and inflammatory genes. Strikingly, corticosterone, but not 5αTHB, reduced collagen deposition. However, both 5αTHB and corticosterone attenuated macrophage infiltration into sponges. In conclusion, 5αTHB displays the profile of a safer topical anti-inflammatory compound. With limited effects on angiogenesis and extracellular matrix, it is less likely to impair wound healing or cause skin thinning.


Assuntos
Corticosterona/análogos & derivados , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Administração Tópica , Animais , Corticosterona/administração & dosagem , Corticosterona/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...