Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(8): e18733, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37609412

RESUMO

As compared with single agronomic crop management practices during grain formation, knowledge about integrated agronomic management practices on grain mineral composition and grain technological properties in durum wheat is limited. This knowledge is important for determining management strategies aimed at increasing grain yield without affecting grain nutritional quality. Integrated agronomic practices such as foliar nutrient application × seeding rate × varieties combined with growing locations were investigated to evaluate the dynamics of yield and grain quality traits. Two durum wheat varieties, three-level of micronutrients (i.e. control, FeSO4, and ZnSO4), and four levels of seeding rate (i.e. 100, 125, 150, and 175 kg ha-1) were arranged in split-split plot design under two different growing locations (environments). The main plots were assigned to the varieties, subplots to micronutrients, and sub-sub plots to the seeding rate treatments. Zinc and iron were applied in a form of ZnSO4 and FeSO4 at the early flowering stage, both at a rate of 25 kg ha-1. Results showed a linear increment in biomass (21.5%) and grain yield (23.5%) under a high seeding rate, even though the 1000-grain weight, the number of grains spike-1, spike length, and the number of grains spike-1 were decreased. Higher varietal and environmental response of seeding rate was observed between varieties. The grain protein content, gluten, and zeleyn index decreased as the seeding rate increased. Grain micronutrient content was significantly influenced by seeding rate and varietal difference. The grain protein content was higher in a dryland environment than in a wet environment. A combined use of density-tolerant varieties, high seeding rate, and foliar-based iron application can improve the grain yield from 2.01 to 3.20 t ha-1 under a potential environment. Hence, all stakeholders should consider the genotype (G), environment (E), management (M), and their synergies, as far as grain yield and quality are considered simultaneously.

2.
Fungal Genet Biol ; 45(11): 1514-22, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18824240

RESUMO

A survey of Fusarium head blight (FHB)-contaminated wheat in Ethiopia recovered 31 isolates resembling members of the Fusarium graminearum species complex. Results of a multilocus genotyping (MLGT) assay for FHB species and trichothecene chemotype determination suggested that 22 of these isolates might represent a new species within the Fg complex. Phylogenetic analyses of multilocus DNA sequence data resolved the 22 Ethiopian isolates as a novel, phylogenetically distinct species. The new species also appears to be novel in that MLGT probe data and sequence analysis of both ends of the TRI-cluster identified 15ADON and NIV recombination blocks, documenting inter-chemotype recombination involving the chemotype-determining genes near the ends of the TRI-cluster. Results of pathogenicity experiments and analyses of trichothecene mycotoxins demonstrated that this novel Fg complex species could induce FHB on wheat and elaborate 15ADON in planta. Herein the FHB pathogen from Ethiopia is formally described as a novel species.


Assuntos
Fusarium/classificação , Fusarium/genética , Filogenia , Doenças das Plantas/microbiologia , Triticum/microbiologia , DNA Fúngico/genética , Etiópia , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/isolamento & purificação , Fusarium/metabolismo , Genótipo , Dados de Sequência Molecular , Técnicas de Tipagem Micológica , Micotoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...