Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cancer Drug Resist ; 6(2): 242-256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457129

RESUMO

Aim: Given the encouraging results of the p53-Mdm2 inhibitor RG7388 in clinical trials and the vital function of miR-16-5p in suppressing cell proliferation, the aim of the present study was to investigate the combined impact of RG7388 and miR-16-5p overexpression on the childhood acute lymphoblastic leukemia (chALL). Methods: miRTarBase and miRDB, along with KEGG and STRING databases, were used to predict miR-16-5p target genes and explore protein-protein interaction networks, respectively. B- and T-lymphoblastic cell lines, in addition to patient primary cells, were treated with RG7388. Ectopic overexpression of miR-16-5p in Nalm6 cell line was induced through cell electroporation and transfection of microRNA mimics was confirmed by qRT-PCR. Cell viability was evaluated using the MTT assay. Western blot analyses were performed to evaluate the effects of RG7388 and miR-16-5p upregulation on the protein levels of p53 and its downstream target genes in chALL cells. Paired sample t-test was employed for statistical analyses. Results: MTT assay showed RG7388-induced cytotoxicity in wild-type p53 Nalm6 cell line and p53 functional patient primary cells. However, CCRF-CEM and p53 non-functional leukemic cells indicated drug resistance. Western blot analyses validated the bioinformatics results, confirming the downregulation of WIP1, p53 stabilization, as well as overexpression of p21WAF1 and Mdm2 proteins in Nalm6 cells transfected with miR-16-5p. Moreover, enhanced sensitivity to RG7388 was observed in the transfected cells. Conclusion: This is the first study indicating the mechanistic importance of miR-16-5p overexpression in chALL and its inhibitory role in leukemia treatment when combined with the p53-Mdm2 antagonist, RG7388. These findings might be useful for researchers and clinicians to pave the way for better management of chALL.

2.
Curr Res Transl Med ; 69(1): 103269, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33071214

RESUMO

Pediatric acute lymphoblastic leukemia (pALL) includes 75 % of childhood leukemias, and methotrexate (MTX) is one of the most effective chemotherapy agents prescribed for pALL treatment. The aim of this study was to establish and characterize an MTX-resistant tumor cell model in order to study the mechanism contributing to drug sensitivity loss in pALL. Parental CCRF-CEM cells were treated with a gradual increasing concentration of MTX from 5 nM to 1.28 µM. The resistant subline was then characterized according to the cellular morphology, cellular growth curves and specific mRNA expression changes associated with drug resistance in ALL. Moreover, in vitro cytotoxicity assays were used to analyze cells relative responsiveness to a set of clinically used anti-ALL chemotherapy drugs. The morphological changes observed in the new R-CCRF-CEM/MVCD subline were associated with dysregulation of the EMT-related genes, Twist1 and CDH1. Cells demonstrated downregulation of ABCC1 and the overexpression of ABCA2, ABCA3, and ABCB1 membrane transporters. However, short treatment of the sensitive and parental cell line with MTX did not affect the expression profiles of the former ABC pumps. Moreover, R-CCRF-CEM/MVCD cells demonstrated cross-resistance to cytarabine (cytosine arabinoside, ara-C), vincristine, and dexamethasone, but not doxorubicin. The induced cross-resistance to specific chemotherapy drugs may possibly be attributed to selective dysregulation of the ABC transporters and EMT-related genes. These data may pave the way for the development of new cancer therapeutic strategies.


Assuntos
Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Metotrexato/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Criança , Citarabina/farmacologia , Dexametasona/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/patologia , Células Tumorais Cultivadas , Vincristina/farmacologia
3.
Jpn J Clin Oncol ; 50(6): 671-678, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32129446

RESUMO

OBJECTIVE: Multidrug resistance and consequent relapse are two major obstacles for treating children with acute lymphoblastic leukemia, the most frequent childhood malignancy. MicroRNAs have potential regulatory roles in response to chemotherapy. The goal of this study was to determine the microRNA that may have effects on the expression level of brain and acute lymphoblastic leukemia (BAALC) and to investigate the in vitro and ex vivo association between their expression levels. METHODS: In silico tools were utilized to determine a putative miRNA targeting BALLC. Quantitative real-time polymerase chain reaction was used to investigate expression levels of BAALC and its predicted microRNA, miR-326, in bone marrow samples of 30 children with acute lymphoblastic leukemia and 13 controls, in addition to the resistant and parental CCRF-CEM cell lines. To assess the status of response to therapy, minimal residual disease was measured using single-strand conformation polymorphism. RESULTS: MiR-326 was selected due to the strong possibility of its interaction with BAALC according to the obtained in silico results. Statistical analysis showed a significant downregulation of miR-326 and overexpression of BALLC in drug-resistant acute lymphoblastic leukemia cell line and patients compared with the parental cell line and drug-sensitive patients, respectively (P = 0.015, 0.005, 0.0484 and 0.0005, respectively). The expression profiles of miR-326 and BAALC were inversely correlated (P = 0.028). CONCLUSIONS: The results introduced the inversely combined expression levels of miR-326 and BAALC as a novel, independent prognostic biomarker for pediatric acute lymphoblastic leukemia (P = 0.007). Moreover, bioinformatics data showed a possible regulatory role for miR-326 on BAALC mRNA, which may possibly contribute to the development of drug resistance in patients with childhood acute lymphoblastic leukemia.


Assuntos
Biomarcadores/análise , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Medula Óssea/metabolismo , Linhagem Celular Tumoral , Criança , Pré-Escolar , Simulação por Computador , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Masculino , MicroRNAs/análise , MicroRNAs/metabolismo , Proteínas de Neoplasias/análise , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Prognóstico , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
4.
Front Oncol ; 9: 1496, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010613

RESUMO

Biomarkers are biological molecules found in body fluids or tissues, which can be considered as indications of a normal or abnormal process, or of a condition or disease. There are various types of biomarkers based on their application and molecular alterations. Treatment-sensitivity or drug resistance biomarkers include prognostic and predictive molecules with utmost importance in selecting appropriate treatment protocols and improving survival rates. Acute lymphoblastic leukemia (ALL) is the most prevalent hematological malignancy diagnosed in children with nearly 80% cure rate. Despite the favorable survival rates of childhood ALL (chALL), resistance to chemotherapeutic agents and, as a consequence, a dismal prognosis develops in a significant number of patients. Therefore, there are urgent needs to have robust, sensitive, and disease-specific molecular prognostic and predictive biomarkers, which could allow better risk classification and then better clinical results. In this article, we review the currently known drug resistance biomarkers, including somatic or germ line nucleic acids, epigenetic alterations, protein expressions and metabolic variations. Moreover, biomarkers with potential clinical applications are discussed.

5.
Onco Targets Ther ; 10: 3373-3380, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28744141

RESUMO

PURPOSE: The aim of this work was to study the correlation between the expressions of the ABCA2 and ABCA3 genes at the mRNA and protein levels in children with acute lymphoblastic leukemia (ALL) and the effects of this association on multidrug resistance (MDR). MATERIALS AND METHODS: Sixty-nine children with de novo ALL and 25 controls were enrolled in the study. Mononuclear cells were isolated from the bone marrow. The mRNA levels of ABCA2 and ABCA3 were measured by real-time polymerase chain reaction (PCR). Samples with high mRNA levels were assessed for respective protein levels by Western blotting. Following the first year of treatment, persistent monoclonality of T-cell gamma receptors or immunoglobulin H (IgH) gene rearrangement was assessed and considered as the MDR. The tertiary structure of ABCA2 was predicted using Phyre2 and I-TASSER web systems and compared to that of ABCA3, which has been previously reported. Molecular docking was performed using DOCK 6.7. RESULTS: Real-time quantitative PCR (qRT-PCR) showed high levels of ABCA2 and ABCA3 mRNAs in 13 and 17 samples, respectively. Among them, five and eight individuals demonstrated high levels of ABCA2 and ABCA3, respectively. Response to chemotherapy was significantly decreased (P=0.001) when the mRNA and protein of both genes were overexpressed compared to individuals with high transcriptional levels of either ABCA2 or ABCA3 alone. Close similarity between ABCA2 and ABCA3 structures was revealed by protein tertiary structure prediction, whereas molecular docking analysis suggested similar binding of chemotherapy drugs and therefore a potentially similar role in determining the MDR. CONCLUSION: Our findings suggested, for the first time, that quantification of the protein level of ABCA2 and ABCA3 transporters had a prognostic impact on pediatric ALL MDR. Furthermore, the tertiary structure of ABCA2 was predicted for the first time, and docking analysis revealed a possible compensatory effect between ABCA2 and ABCA3 transporters, which may contribute to the efflux of cytotoxic drugs and, ultimately, to chemoresistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...