Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 22(1): 259, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195907

RESUMO

BACKGROUND: The leaf of Ceylon cinnamon (true cinnamon) is traditionally claimed for a variety of health benefits. However, reported scientific information is scanty and needs urgent attention for value addition. METHODS: Ethanolic (95%) and Dichloromethane:Methanol (DM, 1:1 v/v) leaf extracts of Ceylon cinnamon were evaluated for a range of medically important bioactivities namely anti-inflammatory [nitric oxide scavenging activity (NOSA), superoxide scavenging activity (SCA), COX1 and COX2 inhibition], growth inhibition & cytotoxicity against MCF7, HePG2 and AN3CA carcinoma cell lines, glutathionase-S-transferase (GST) inhibition and antilipidemic (anti-HMG-CoA reductase, anti-lipase, anti-cholesterol esterase, and cholesterol micellization inhibition) properties in vitro (n = 3). Further, a range of bioactive compounds in both leaf extracts was also quantified (n = 3). RESULTS: Both leaf extracts had all the investigated bioactive compounds and possessed moderately potent bioactivities compared to the reference drugs used in the study. Ethanolic leaf extract (ELE) exhibited the highest activities (IC50: µg/mL) for NOSA (40.26 ± 0.52), SCA (696.24 ± 40.02), cholesterol esterase inhibition (110.19 ± 1.55), cholesterol micellization inhibition (616.69 ± 7.09), GST inhibition (403.78 ± 2.70) and growth inhibition (GI50: 144.84 ± 1.59-269.00 ± 0.51) & cytotoxicity (LC50: 355.44 ± 9.38-717.71 ± 23.69) against studied cancer cell lines. In contrast, COX1 & COX2 (IC50: 6.62 ± 0.85 and 44.91 ± 3.06 µg/mL) and HMG-CoA reductase & lipase inhibitory activities (36.72 ± 4.74 and 19.71 ± 0.97% inhibition at 200 and 600 µg/mL) were highest in DM extract. ELE also showed the highest quantities (0.81 ± 0.06-104.38 ± 1.79) of tested compounds (mg/g extract) where eugenol was the highest and gallic acid was the lowest among quantified. CONCLUSION: Both leaf extracts of Ceylon cinnamon had all the tested bioactive compounds and possess all the investigated bioactivities. This is the 1st study to report all the investigated bioactivities of the leaf of Ceylon Cinnamon.


Assuntos
Cinnamomum zeylanicum , Óleos Voláteis , Anti-Inflamatórios/farmacologia , Coenzima A , Ciclo-Oxigenase 2 , Esterases , Eugenol , Ácido Gálico , Metanol , Cloreto de Metileno , Óxido Nítrico , Oxirredutases , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Superóxidos , Transferases
2.
Artigo em Inglês | MEDLINE | ID: mdl-34239583

RESUMO

The present study evaluated a range of biological activities of selected millet types and sorghum varieties in Sri Lanka in relation to diabetes and its complications management. Five millet types, namely, proso millet, white finger millet, kodo millet, foxtail millet, and finger millet (Oshadha and Rawana), and two sorghum varieties, namely, sweet sorghum and sorghum ICSV 112, were used in this study. Methanolic extracts of whole grains were studied for antiamylase, antiglucosidase, and early- and middle-stage antiglycation and glycation reversing activities in vitro. Tested millets and sorghum showed significant (p < 0.05) and dose-dependent antiamylase (IC50: 33.34 ± 1.11-1446.70 ± 54.10 µg/ml), early-stage antiglycation (IC50: 15.42 ± 0.50-270.03 ± 16.29 µg/ml), middle-stage antiglycation (135.08 ± 12.95-614.54 ± 6.99 µg/ml), early-stage glycation reversing (EC50: 91.82 ± 6.56-783.20 ± 61.70 µg/ml), and middle-stage glycation reversing (393.24 ± 8.68-1374.60 ± 129.30 µg/ml) activities. However, none of the studied millet and sorghum showed antiglucosidase activity. Out of the samples studied, pigmented samples, namely, sweet sorghum, Oshadha, and Rawana, exhibited significantly high (p < 0.05) antiamylase and early- and middle-stage antiglycation and glycation reversing activities compared to other millet and sorghum samples. Interestingly, sweet sorghum exhibited nearly four times potent antiamylase activity compared to the standard drug acarbose (IC50 111.98 ± 2.68 µg/ml) and sweet sorghum, kodo millet, Oshadha, and Rawana showed comparable early-stage antiglycation activities in comparison to the reference standard Rutin (IC50 21.88 ± 0.16 µg/ml). Therefore, consumption of whole grains of pigmented millet and sorghum in Sri Lanka may play an important role in the prevention and management of diabetes and its complications. Interestingly, this is the 1st study to report all the tested biological activities for millet and sorghum in Sri Lanka and the 1st study to report both early- and middle-stage glycation reversing activities of millet and sorghum worldwide.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31396287

RESUMO

Dichloromethane:methanol (1:1, v/v) extracts of different maturity stages (immature, partly mature, and mature) of authenticated leaves of Ceylon cinnamon (CC) were used in this study. Antioxidant properties [total polyphenolic content (TPC) and total flavonoid content (TFC), 1, 1-diphenyl-2-picryl-hydrazyl (DPPH), 2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS)), oxygen radical absorbance capacity (ORAC), and ferric reducing antioxidant power (FRAP)] and glycemic regulatory properties [antiamylase (AA); antiglucosidase (AG)] were evaluated using 96-well microplate based bio assays in vitro (TPC, TFC, DPPH, ABTS, ORAC n=4 each; FRAP, AA, AG n=3 each). Results clearly revealed significant differences (p<0.05) among different maturity stages of leaf of CC for both antioxidant and glycemic regulatory properties (except AG activity). The mean antioxidant and glycemic regulatory activities of immature, partly mature, and mature leaves ranged from TPC: 0.68 ± 0.02-22.35 ± 0.21 mg gallic acid equivalents/g of sample (GS); TFC: 0.85 ± 0.01-4.68 ± 0.06 mg quercetin equivalents/GS; DPPH: 0.42 ± 0.01-27.09 ± 0.65 mg Trolox equivalents (TE)/GS; ABTS: 3.57 ± 0.10-43.91 ± 1.46 TE/GS; ORAC: 0.71 ± 0.01-18.70 ± 0.26 TE/G, FRAP: 0.31 ± 0.02-69.16 ± 0.52 TE/GS; and AA: 18.05 ± 0.24-36.62 ± 4.00% inhibition at 2.5 mg/mL. Mature leaf had the highest antioxidant and AA activities for all the assays investigated. In contrast, immature leaf had the lowest. The order of potency for antioxidant and AA activities was mature leaf > partly mature leaf > immature leaf. This is the first study to report on antioxidant and glycemic regulatory properties of different maturity stages of leaf of Ceylon cinnamon and highlights its potential use in management of oxidative stress-associated chronic diseases including diabetes mellitus.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31236123

RESUMO

Clitoria ternatea L. commonly known as 'blue pea' is an underutilized plant in Sri Lanka. The blue coloured flower of this plant is used in medicine in Sri Lankan traditional medical system and also reported to have several health benefits in recent findings at the international level. However, to date scientifically validated value added products from blue pea flower (BPF) is very limited worldwide. In this connection, this study was carried out to develop a commercial potential blue pea flower extract (BFE) incorporated beverage having functional properties. Dried BPFs were extracted into water with varying flower: water ratio, temperature, and time using response surface methodology (RSM) along with Box-Behnken design. A range of BFE incorporated beverages was developed comprising a natural sweetener (Stevia extract) and a flavour (lime). The most acceptable formulation was selected via ranking and hedonic sensory tests. Further, it was evaluated for functional properties in terms of antioxidant activity via total polyphenolic and flavonoid contents, ferric reducing antioxidant power and radical scavenging activities via ORAC; DPPH and ABTS. Glycaemic regulatory properties (GCP) were evaluated in terms of antiamylase and antiglucosidase activities. Quality parameters of the developed beverage were evaluated for a period of 28 days at different time intervals and a colour chart was also developed. The optimum conditions for extraction of BPF via RSM were 3 g of powdered BPF/L of water at 59.6 °C for 37 min. The most acceptable formulation consists of BFE, Stevia extract, and lime at a ratio of 983.25:1.75:15. Further, it had significantly higher (p<0.05) consumer preference for sensory attributes. Further, it possesses an antioxidant activity through multiple mechanisms while GCP were not detected. Moreover, it was shelf stable for a period of 28 days without preservatives. The colour chart can be used to monitor the quality of the beverage.

5.
Artigo em Inglês | MEDLINE | ID: mdl-28951761

RESUMO

Ethanol (95%) and dichloromethane : methanol (DCM : M, 1 : 1 v/v) bark extracts (BEs) and leaf extracts (LEs) of authenticated Ceylon cinnamon (CC) were studied for antiamylase, antiglucosidase, anticholinesterases, and antiglycation and glycation reversing potential in bovine serum albumin- (BSA-) glucose and BSA-methylglyoxal models in vitro. Further, total proanthocyanidins (TP) were quantified. Results showed significant differences (p < 0.05) between bark and leaf extracts for the studied biological activities (except antiglucosidase) and TP. BEs showed significantly high (p < 0.05) activities for antiamylase (IC50: 214 ± 2-215 ± 10 µg/mL), antibutyrylcholinesterase (IC50: 26.62 ± 1.66-36.09 ± 0.83 µg/mL), and glycation reversing in BSA-glucose model (EC50: 94.33 ± 1.81-107.16 ± 3.95 µg/mL) compared to LEs. In contrast, glycation reversing in BSA-methylglyoxal (EC50: ethanol: 122.15 ± 6.01 µg/mL) and antiglycation in both BSA-glucose (IC50: ethanol: 15.22 ± 0.47 µg/mL) and BSA-methylglyoxal models (IC50: DCM : M: 278.29 ± 8.55 µg/mL) were significantly high (p < 0.05) in leaf. Compared to the reference drugs used some of the biological activities were significantly (p < 0.05) high (BEs: BChE inhibition and ethanol leaf: BSA-glucose mediated antiglycation), some were comparable (BEs: BSA-glucose mediated antiglycation), and some were moderate (BEs and LEs: antiamylase, AChE inhibition, and BSA-MGO mediated antiglycation; DCM : M leaf: BSA-glucose mediated antiglycation). TP were significantly high (p < 0.05) in BEs compared to LEs (BEs and LEs: 1097.90 ± 73.01-1381.53 ± 45.93 and 309.52 ± 2.81-434.24 ± 14.12 mg cyanidin equivalents/g extract, resp.). In conclusion, both bark and leaf of CC possess antidiabetic properties and thus may be useful in managing diabetes and its complications.

6.
Artigo em Inglês | MEDLINE | ID: mdl-28808476

RESUMO

Ethanol (95%) and dichloromethane : methanol (1 : 1) bark extracts of authenticated Ceylon cinnamon were investigated for range of antilipidemic activities (ALA): HMG-CoA reductase, lipase, cholesterol esterase, and cholesterol micellization inhibitory activities and bile acids binding in vitro. Individual compounds in bark extracts were also evaluated. Bark extracts showed ALA in all the assays studied. The IC50 (µg/mL) values ranged within 153.07 ± 8.38-277.13 ± 32.18, 297.57 ± 11.78-301.09 ± 4.05, 30.61 ± 0.79-34.05 ± 0.41, and 231.96 ± 9.22-478.89 ± 9.27, respectively, for HMG-CoA reductase, lipase, cholesterol esterase, and cholesterol micellization inhibitory activities. The bile acids binding (3 mg/mL) for taurocholate, glycodeoxycholate, and chenodeoxycholate ranged within 19.74 ± 0.31-20.22 ± 0.31, 21.97 ± 2.21-26.97 ± 1.61, and 16.11 ± 1.42-19.11 ± 1.52%, respectively. The observed ALA were moderate compared to the reference drugs studied. Individual compounds in bark extracts ranged within 2.14 ± 0.28-101.91 ± 3.61 and 0.42 ± 0.03-49.12 ± 1.89 mg/g of extract. Cinnamaldehyde and gallic acid were the highest and the lowest among the tested compounds. The ethanol extract had highest quantity of individual compounds and ALA investigated. Properties observed indicate usefulness of Ceylon cinnamon bark in managing hyperlipidemia and obesity worldwide. Further, this study provides scientific evidence for the traditional claim that Ceylon cinnamon has antilipidemic activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA