Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 19(8): 5796-5805, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31348661

RESUMO

Guided manipulation of light through periodic nanoarrays of three-dimensional (3D) metal-dielectric patterns provides remarkable opportunities to harness light in a way that cannot be obtained with conventional optics yet its practical implementation remains hindered by a lack of effective methodology. Here we report a novel 3D nanoassembly method that enables deterministic integration of quasi-3D plasmonic nanoarrays with a foreign substrate composed of arbitrary materials and structures. This method is versatile to arrange a variety of types of metal-dielectric composite nanoarrays in lateral and vertical configurations, providing a route to generate heterogeneous material compositions, complex device layouts, and tailored functionalities. Experimental, computational, and theoretical studies reveal the essential design features of this approach and, taken together with implementation of automated equipment, provide a technical guidance for large-scale manufacturability. Pilot assembly of specifically engineered quasi-3D plasmonic nanoarrays with a model hybrid pixel detector for deterministic enhancement of the detection performances demonstrates the utility of this method.

2.
Opt Lett ; 40(20): 4711-4, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26469601

RESUMO

A transmission-type metasurface composed of carefully designed rectangular slot antennas for the generation of vectorial optical fields is proposed and demonstrated. Acting as local linear polarizers, these slot antennas enable the spatial modulation of optical fields in amplitude, phase, and polarization for the cross-polarized component of the scattered field. As an illustration, a metasurface capable of forming a radially polarized scattered field with specific vectorial beam patterns with appropriate excitation at normal incidence is designed, fabricated, and tested. The radially polarized scattered field is designed to be further tightly focused by a high numerical aperture objective lens in order to obtain a uniform longitudinally polarized optical needle field along the propagation direction. Characterization experiments demonstrate that its overall extinction ratio satisfies the amplitude modulation requirement, and a corresponding π phase modulation is realized as proposed.

3.
Sci Rep ; 3: 2237, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23868718

RESUMO

Optical antennas have been utilized to tailor the emission properties of nanoscale emitters in terms of the intensity, directivity and polarization. In this letter, we further explore the capability of beam steering via the use a spiral plasmonic structure as a transmitting antenna. According to both numerical simulation and experimental observations, the beaming direction can be steered through introducing a displacement of the feeding point to the spiral antenna from the geometrical center. For a 3-turn Archimedes' spiral antenna, experimental results show that steering angles of 3° and 7° are obtainable when the excitation location is transversally shifted from the center by a displacement of 200 nm and 500 nm, respectively. Furthermore, the emitted photons carry spin angular momentum determined by the chirality of the spiral optical antenna. A steerable nanoscale spin photon source may find important applications in single molecule sensing, quantum optical information processing and integrated photonic circuits.

4.
Opt Express ; 20(24): 26299-307, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23187484

RESUMO

A hybrid spiral plasmonic lens that consists of alternating spiral slot and spiral triangular sub-aperture array can differentiate circular polarization of different handedness and enable a miniature circular polarization analyzer design with high efficiency. The improved performance compared to pure spiral slot lens comes from the fact that the hybrid lens is capable of focusing both the radial and the azimuthal polarization components of a circular polarization, doubling the coupling efficiency. In this paper, the spin-dependent plasmonic focusing properties of a spatially arranged triangular sub-aperture array and a hybrid spiral plasmonic lens are demonstrated using a collection mode near field scanning optical microscope. The coupling efficiency could be further improved through optimizing the geometry of the hybrid lens.


Assuntos
Lentes , Iluminação/instrumentação , Nanoestruturas/química , Nanotecnologia/instrumentação , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Humanos
5.
Opt Express ; 20(17): 19297-304, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23038571

RESUMO

Coupling nanoscale emitters via optical antennas enables comprehensive control of photon emission in terms of intensity, directivity and polarization. In this work we report highly directional emission of circularly polarized photons from quantum dots coupled to a spiral optical antenna. The structural chirality of the spiral antenna imprints spin state to the emitted photons. Experimental results reveal that a circular polarization extinction ratio of 10 is obtainable. Furthermore, increasing the number of turns of the spiral gives rise to higher antenna gain and directivity, leading to higher field intensity and narrower angular width of emission pattern in the far field. For a five-turn Archimedes' spiral antenna, field intensity increase up to 70-fold simultaneously with antenna directivity of 11.7 dB has been measured in the experiment. The highly directional circularly polarized photon emission from such optically coupled spiral antenna may find important applications in single molecule sensing, quantum optics information processing and integrated photonic circuits as a nanoscale spin photon source.


Assuntos
Pontos Quânticos , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento
6.
Opt Lett ; 35(11): 1755-7, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20517405

RESUMO

The spiral plasmonic lens is capable of focusing the left-hand and right-hand circular polarizations into spatially separated plasmonic fields caused by the geometric phase effect. Its function as a circular polarization analyzer has been studied analytically and numerically in a previous Letter [Opt. Lett.34, 3047 (2009)OPLEDP0146-959210.1364/OL.34.003047]. Single Archimedes' spiral grooves with lateral sizes of approximately 4lambda(spp) (approximately 2.8 microm) were milled into a gold thin film by using a focused ion beam. The function of such a simple spiral plasmonic lens serving as a circular polarization analyzer was experimentally characterized with two-photon fluorescence microscopy. The circular polarization extinction ratio of the two-photon fluorescent signal is estimated to be larger than 200 for a detector diameter up to 0.3lambda(spp).

7.
Nano Lett ; 10(6): 2075-9, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20459108

RESUMO

A spiral plasmonic lens can focus circular polarization of a given handedness while simultaneously defocus the circular polarization of the opposite chirality, which may be used as a miniature circular polarization analyzer. In this letter, we experimentally investigated the plasmonic focusing properties of the spiral lens using a collection mode near-field scanning optical microscope. A single Archimedes' spiral slot with a single turn was etched through gold thin film as a spiral plasmonic lens. The plasmonic field at the focus of a spiral lens strongly depends on the spin of the incident photon. Circular polarization extinction ratio better than 50 is obtainable with a device size as small as only 4 times of surface plasmon wavelength.

8.
Nano Lett ; 9(12): 4320-5, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19877687

RESUMO

Optimal plasmonic focusing can be achieved through matching the rotational symmetry of the plasmonic lens to the polarization symmetry of a radially polarized illumination. In this letter, we report the experimental confirmation of the focusing properties and field enhancement effect of plasmonic lens made of multiple concentric annular rings using a collection mode near field scanning optical microscope. Surface plasmons excited at all azimuthal directions propagate toward the geometric center and constructively interfere at the focus to create a strongly enhanced evanescent optical "needle" field that is substantially polarized vertically to the plasmonic lens surface. The field enhancement factor can be improved through adding more rings while maintaining the plasmonic focal spot size. Strategy for optimizing the field enhancement factor is studied with both analytical and numerical methods.


Assuntos
Lentes , Iluminação/instrumentação , Metais/química , Nanoestruturas/química , Nanotecnologia/instrumentação , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Nanoestruturas/ultraestrutura , Ressonância de Plasmônio de Superfície/métodos
9.
Nanotechnology ; 20(47): 475301, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19858557

RESUMO

We demonstrated polymethylmethacrylate (PMMA) polymer underlayer assisted, focused-ion-beam (FIB)-induced dewetting of a top Au nanofilm where we found that the underlayer played a prominent and, in some cases, a useful role in the dewetting of the top layer. For an Au nanofilm deposited on a thick uniform PMMA underlayer, where the underlayer is stable and therefore does not dewet, irregularly spaced Au nanoparticles (AuNPs) were formed as expected by raster-scanning of a focused Ga-ion beam. On the other hand, topographically pre-patterned thin PMMA film provided heterogeneous nucleation sites for both the Au top layer and the PMMA underlayer to initiate dewetting at and guidance for forming regularly spaced AuNPs with much narrower size distribution at significantly lower ion dose levels when compared to the thick, uniform underlayer case. We also found that the underlayer assisted dewetting in this case relaxes the restriction on pre-pattern periodicity to obtain a single NP per pattern period, which is a noteworthy departure from the pre-patterned solid substrate case. FIB-induced AuNP areas can have sharp boundaries and can be positioned on a selected area of a substrate with high positional accuracy, which is important for the implementation of devices in sensing, nano-optics/photonics, and optoelectronic applications.

10.
Appl Opt ; 45(8): 1737-42, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16572689

RESUMO

Optical microelectromechanical system pressure sensors based on the principle of Fabry-Perot interferometry have been developed and fabricated using the technique of silicon-to-silicon anodic bonding. The pressure sensor is then integrated onto an optical fiber by a novel technique of anodic bonding without use of any adhesives. In this anodic bonding technique we use ultrathin silicon of thickness 10 microm to bond the optical fiber to the sensor head. The ultrathin silicon plays the role of a stress-reducing layer, which helps the bonding of an optical fiber to silicon having conventional wafer thickness. The pressure-sensing membrane is formed by 8 microm thick ultrathin silicon acting as a membrane, thus eliminating the need for bulk silicon etching. The pressure sensor integrated onto an optical fiber is tested for static response, and experimental results indicate degradation in the fringe visibility of the Fabry-Perot interferometer. This effect was mainly due to divergent light rays from the fiber degrading the fringe visibility. This effect is demonstrated in brief by an analytical model.

11.
Opt Express ; 14(14): 6557-63, 2006 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19516833

RESUMO

A novel basis for beam steering with electrowetting microprisms (EMPs) is reported. EMPs utilize electrowetting modulation of liquid contact angle in order to mimic the refractive behavior for various classical prism geometries. Continuous beam steering through an angle of 14 degrees (+/-7 degrees ) has been demonstrated with a liquid index of n=1.359. Experimental results are well-matched to theoretical behavior up to the point of electrowetting contact-angle saturation. Projections show that use of higher index liquids (n~1.6) will result in steering through ~30 degrees (+/-15 degrees ). Fundamental factors defining achievable deflection range, and issues for Ladar use, are reviewed. This approach is capable of good switching speed (~ms), polarization independent operation, modulation of beam field-of-view (lensing), and high steering efficiency that is independent of deflection angle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...