Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34638286

RESUMO

Specific inhibitors of HIF-2α have recently been approved for the treatment of ccRCC in VHL disease patients and have shown encouraging results in clinical trials for metastatic sporadic ccRCC. However, not all patients respond to therapy and pre-clinical and clinical studies indicate that intrinsic as well as acquired resistance mechanisms to HIF-2α inhibitors are likely to represent upcoming clinical challenges. It would be desirable to have additional therapeutic options for the treatment of HIF-2α inhibitor resistant ccRCCs. Here we investigated the effects on tumor growth and on the tumor microenvironment of three different direct and indirect HIF-α inhibitors, namely the HIF-2α-specific inhibitor PT2399, the dual HIF-1α/HIF-2α inhibitor Acriflavine, and the S1P signaling pathway inhibitor FTY720, in the autochthonous Vhl/Trp53/Rb1 mutant ccRCC mouse model and validated these findings in human ccRCC cell culture models. We show that FTY720 and Acriflavine exhibit therapeutic activity in several different settings of HIF-2α inhibitor resistance. We also identify that HIF-2α inhibition strongly suppresses T cell activation in ccRCC. These findings suggest prioritization of sphingosine pathway inhibitors for clinical testing in ccRCC patients and also suggest that HIF-2α inhibitors may inhibit anti-tumor immunity and might therefore be contraindicated for combination therapies with immune checkpoint inhibitors.

2.
J Clin Invest ; 128(8): 3341-3355, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29939160

RESUMO

High-risk neuroblastoma is a devastating malignancy with very limited therapeutic options. Here, we identify withaferin A (WA) as a natural ferroptosis-inducing agent in neuroblastoma, which acts through a novel double-edged mechanism. WA dose-dependently either activates the nuclear factor-like 2 pathway through targeting of Kelch-like ECH-associated protein 1 (noncanonical ferroptosis induction) or inactivates glutathione peroxidase 4 (canonical ferroptosis induction). Noncanonical ferroptosis induction is characterized by an increase in intracellular labile Fe(II) upon excessive activation of heme oxygenase-1, which is sufficient to induce ferroptosis. This double-edged mechanism might explain the superior efficacy of WA as compared with etoposide or cisplatin in killing a heterogeneous panel of high-risk neuroblastoma cells, and in suppressing the growth and relapse rate of neuroblastoma xenografts. Nano-targeting of WA allows systemic application and suppressed tumor growth due to an enhanced accumulation at the tumor site. Collectively, our data propose a novel therapeutic strategy to efficiently kill cancer cells by ferroptosis.


Assuntos
Apoptose/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Vitanolídeos/farmacologia , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Heme Oxigenase-1/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Proteínas de Neoplasias/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Sci Rep ; 5: 8202, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25644037

RESUMO

Flubendazole was shown to exert anti-leukaemia and anti-myeloma activity through inhibition of microtubule function. Here, flubendazole was tested for its effects on the viability of in total 461 cancer cell lines. Neuroblastoma was identified as highly flubendazole-sensitive cancer entity in a screen of 321 cell lines from 26 cancer entities. Flubendazole also reduced the viability of five primary neuroblastoma samples in nanomolar concentrations thought to be achievable in humans and inhibited vessel formation and neuroblastoma tumour growth in the chick chorioallantoic membrane assay. Resistance acquisition is a major problem in high-risk neuroblastoma. 119 cell lines from a panel of 140 neuroblastoma cell lines with acquired resistance to various anti-cancer drugs were sensitive to flubendazole in nanomolar concentrations. Tubulin-binding agent-resistant cell lines displayed the highest flubendazole IC50 and IC90 values but differences between drug classes did not reach statistical significance. Flubendazole induced p53-mediated apoptosis. The siRNA-mediated depletion of the p53 targets p21, BAX, or PUMA reduced the neuroblastoma cell sensitivity to flubendazole with PUMA depletion resulting in the most pronounced effects. The MDM2 inhibitor and p53 activator nutlin-3 increased flubendazole efficacy while RNAi-mediated p53-depletion reduced its activity. In conclusion, flubendazole represents a potential treatment option for neuroblastoma including therapy-refractory cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Mebendazol/análogos & derivados , Animais , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Galinhas , Inibidor de Quinase Dependente de Ciclina p21/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , Imidazóis/antagonistas & inibidores , Imidazóis/metabolismo , Mebendazol/farmacologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Piperazinas/antagonistas & inibidores , Piperazinas/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/antagonistas & inibidores , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
4.
Biochem Pharmacol ; 91(2): 157-67, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25069048

RESUMO

TRAIL (TNFα-related apoptosis-inducing factor) has been promoted as a promising anti-cancer agent. Unfortunately many tumor cells develop resistance towards TRAIL due to numerous defects in apoptotic signaling. To handle this problem combination therapy with compounds affecting as many different anti-apoptotic targets as possible might be a feasible approach. The bromo-substituted indirubin derivative 6BIO meets this challenge: Treatment of breast cancer and bladder carcinoma cell lines with micromolar concentrations of 6BIO abrogates cellular growth and induces apoptosis. Combination of subtoxic amounts of 6BIO with ineffective doses of TRAIL completely abolishes proliferation and long-term survival of cancer cells. As shown in two-dimensional as well as three-dimensional cell culture models, 6BIO potently augments TRAIL-induced apoptosis in cancer cell lines. The potent chemosensitizing effect of 6BIO to TRAIL-mediated cell death is due to the pleiotropic inhibitory profile of 6BIO. As shown previously, 6BIO abrogates STAT3, PDK1 as well as GSK3 signaling and moreover, inhibits the expression of the anti-apoptotic Bcl-2 family members Bcl-xL and Mcl-1 on mRNA as well as on protein level, as demonstrated in this study. Moreover, the expression of cFLIP and cIAP1 is significantly downregulated in 6BIO treated cancer cell lines. In sum (subtoxic concentration of) the multi-kinase inhibitor 6BIO serves as a potent chemosensitizing agent fighting TRAIL resistant cancer cells.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Indóis/farmacologia , Oximas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Humanos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...