Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Funct Genomics ; 22(2): 204-216, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37053503

RESUMO

Gene expression varies due to the intrinsic stochasticity of transcription or as a reaction to external perturbations that generate cellular mutations. Co-regulation, co-expression and functional similarity of substances have been employed for indoctrinating the process of the transcriptional paradigm. The difficult process of analysing complicated proteomes and biological switches has been made easier by technical improvements, and microarray technology has flourished as a viable platform. Therefore, this research enables Microarray to cluster genes that are co-expressed and co-regulated into specific segments. Copious search algorithms have been employed to ascertain diacritic motifs or a combination of motifs that are performing regular expression, and their relevant information corresponding to the gene patterns is also documented. The associated genes co-expression and relevant cis-elements are further explored by engaging Escherichia coli as a model organism. Various clustering algorithms have also been used to generate classes of genes with similar expression profiles. A promoter database 'EcoPromDB' has been developed by referring RegulonDB database; this promoter database is freely available at www.ecopromdb.eminentbio.com and is divided into two sub-groups, depending upon the results of co-expression and co-regulation analyses.


Assuntos
Algoritmos , Escherichia coli , Escherichia coli/genética , Regiões Promotoras Genéticas/genética
2.
Adv Protein Chem Struct Biol ; 129: 163-188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35305718

RESUMO

Selectin enzymes are glycoproteins and are an important adhesion molecule in the mammalian immune system, especially in the inflammatory response and the healing process of tissues. Selectins play an important role in a variety of biological processes, including the rolling of leukocytes in endothelial cells, a process known as the adhesion cascade. It has recently been discovered and reported that the selectin mechanism plays a role in cancer and thrombosis disease. This process begins with non-covalent interactions-based selectin-ligand binding and the glycans play a role as a connector between cancer cells and the endothelium in this process. The selectin mechanism is critical for the immune system, but it is also involved in disease mechanisms, earning the selectins the nickname "Selectins-The Two Dr. Jekyll and Mr. Hyde Faces". As a result, the drug for selectins should have a multifaceted role and be a dynamic molecule that targets the disease mechanism specifically. This chapter explores the role of selectins in the disease mechanism at the mechanism level that provides the impact for identifying the selectin inhibitors. Overall, this chapter provides the molecular level insights on selectins, their ligands, involvement in normal and disease mechanisms.


Assuntos
Células Endoteliais , Selectinas , Animais , Células Endoteliais/metabolismo , Humanos , Leucócitos/metabolismo , Ligantes , Mamíferos/metabolismo , Selectinas/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-34090612

RESUMO

Numbers of pathogenic bacteria can induce apoptosis in human host cells and modulate the cellular pathways responsible for inducing or inhibiting apoptosis. These pathogens are significantly recognized by host proteins and provoke the multitude of several signaling pathways and alter the cellular apoptotic stimuli. This process leads the bacterial entry into the mammalian cells and evokes a variety of responses like phagocytosis, release of mitochondrial cytochrome c, secretion of bacterial effectors, release of both apoptotic and inflammatory cytokines, and the triggering of apoptosis. Several mechanisms are involved in bacteria-induced apoptosis including, initiation of the endogenous death machinery, pore-forming proteins, and secretion of superantigens. Either small molecules or proteins may act as a binding partner responsible for forming the protein complexes and regulate enzymatic activity via protein-protein interactions. The bacteria induce apoptosis, attack the human cell and gain control over various types of cells and tissue. Since these processes are intricate in the defense mechanisms of host organisms against pathogenic bacteria and play an important function in host-pathogen interactions. In this chapter, we focus on the various bacterial-induced apoptosis mechanisms in host cells and discuss the important proteins and bacterial effectors that trigger the host cell apoptosis. The structural characterization of bacterial effector proteins and their interaction with human host cells are also considered.


Assuntos
Apoptose/imunologia , Bactérias , Infecções Bacterianas/imunologia , Proteínas de Bactérias , Fatores de Virulência , Bactérias/imunologia , Bactérias/patogenicidade , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Humanos , Relação Estrutura-Atividade , Fatores de Virulência/química , Fatores de Virulência/imunologia
4.
J Biomol Struct Dyn ; 39(13): 4582-4593, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32567979

RESUMO

The recent pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) calls the whole world into a medical emergency. For tackling Coronavirus Disease 2019 (COVID-19), researchers from around the world are swiftly working on designing and identifying inhibitors against all possible viral key protein targets. One of the attractive drug targets is guanine-N7 methyltransferase which plays the main role in capping the 5'-ends of viral genomic RNA and sub genomic RNAs, to escape the host's innate immunity. We performed homology modeling and molecular dynamic (MD) simulation, in order to understand the molecular architecture of Guanosine-P3-Adenosine-5',5'-Triphosphate (G3A) binding with C-terminal N7-MTase domain of nsp14 from SARS-CoV-2. The residue Asn388 is highly conserved in present both in N7-MTase from SARS-CoV and SARS-CoV-2 and displays a unique function in G3A binding. For an in-depth understanding of these substrate specificities, we tried to screen and identify inhibitors from the Traditional Chinese Medicine (TCM) database. The combination of several computational approaches, including screening, MM/GBSA, MD simulations, and PCA calculations, provides the screened compounds that readily interact with the G3A binding site of homology modeled N7-MTase domain. Compounds from this screening will have strong potency towards inhibiting the substrate-binding and efficiently hinder the viral 5'-end RNA capping mechanism. We strongly believe the final compounds can become COVID-19 therapeutics, with huge international support.[Formula: see text]The focus of this study is to screen for antiviral inhibitors blocking guanine-N7 methyltransferase (N7-MTase), one of the key drug targets involved in the first methylation step of the SARS-CoV-2 RNA capping mechanism. Compounds binding the substrate-binding site can interfere with enzyme catalysis and impede 5'-end cap formation, which is crucial to mimic host RNA and evade host cellular immune responses. Therefore, our study proposes the top hit compounds from the Traditional Chinese Medicine (TCM) database using a combination of several computational approaches.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Metiltransferases , Antivirais/farmacologia , Exorribonucleases/metabolismo , Guanina , Humanos , Metiltransferases/metabolismo , Simulação de Dinâmica Molecular , RNA Viral , SARS-CoV-2 , Proteínas não Estruturais Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...