Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e31655, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845952

RESUMO

The post-pandemic energy crisis and ever-increasing environmental degradation necessitate researchers to scrutinize refrigeration systems, major contributors to these issues, for minimal environmental impact and maximum performance. Thus, this study aims to comprehensively examine a triple cascade refrigeration system (TCRS) equipped with hydrocarbon refrigerants (1-butene/Heptane/m-Xylene). This system is specifically designed for ultra-low temperature applications, including vaccine storage, quick-freezing, frozen food preservation, cryogenic processes, and gas liquefaction. The investigation integrates conventional thermodynamic analysis with economic and environmental impact assessments, and finally multi-objective optimization (MOO) to ascertain optimal operating conditions for the system. The effect of (1) evaporator temperature, Tevap (2) condenser temperature, Tcond (3) Lower Temperature Circuit (LTC) condenser temperature, TLTC (4) Mid Temperature Circuit (MTC) condenser temperature, TMTC and (5) Cascade Condenser temperature difference, Δ T on three objective functions (COP, exergy efficiency, and overall plant cost) have been investigated employing a parametric analysis. Subsequently, quadratic equations for these objective functions are generated using the Box-Behnken method, and MOO utilizing the Genetic algorithm has been performed to maximize COP and exergy efficiency while minimizing the overall cost rate. The decision-making techniques TOPSIS and LINMAP are used to retrieve a unique solution from the Pareto Front, and the system performance has been assessed at the optimal point. The optimization result demonstrates that for the 10-kW capacity TCRS, COP, exergy efficiency, and total plant cost are 0.71, 0.51, and 38262.05 $/year respectively, at optimum condition (Tevap = -101.023 °C , Tcond = 36.545 °C , TLTC = - 69.047 °C and TMTC = - 34.651 °C ). Exergy analysis identifies HTC compressor (19.3 %) and throttle valve (15.5 %) as key contributors to total exergy destruction, while economic analysis underscores capital and maintenance costs (72 %) as the primary contributors to the overall cost, with evaporator (43 %) and condenser (20 %) accounting for 63 % of this cost.

2.
Sci Rep ; 13(1): 18452, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891218

RESUMO

This research paper investigates the optimization of radiation performance of a plasma-based bioconvective nanofluid integrated Magneto-hydrodynamic (MHD) micropump for radiative oncology. It addresses a literature gap by analysing the radiative impact of blood-based hybrid nanofluids in MHD micropumps. Three blood-based bio-convective radiating hybrid nanofluids-blood-Pt, blood-Au and blood-MWCNT are studied to understand their radiation behaviour in MHD pump while being employed as transportation medium. The investigation employs two non-dimensional parameters, namely Rd (Radiation number) and Ha (Hartmann number), to examine the fluid dynamics, magnetic characteristics, and electrical properties of the MHD micropump. The temperature gradient, velocity distribution, and pressure drop along the flow channel are examined within the specified range of Rd and Ha. Magnetic flux density (MFD) and electric flux intensity (EFI) are evaluated to understand nanoparticle behaviour during drug delivery and blood transportation. Findings highlight that MWCNT and Pt are the most efficient bioconvective nanoparticles for plasma transportation under high radiative conditions. MWCNT-based blood flow exhibits desirable characteristics, including sufficient intake pressure of 4.5 kPa and minimal relative pressure drop of 34%. Coherence between radiation flux and electromagnetic flux reduces pumping power and ensures uniform heat dissipation for improved drug delivery. Au nanoparticles provide moderate magnetic flux density with least fluctuation within the range of Ha and Rd number (2.57 T to 4.39 T), even in highly radiative environments (such as-Rd = 4, Rd = 5), making them suitable for applications like embedded chemotherapy or cell treatment. Au nanoparticles maintain moderate electrical flux intensity with a minimal drop of 16nA, particularly at higher radiative environments influenced by the Radiation number (Rd = 4 to Rd = 5) while Ha values from Ha = 2 to Ha = 4. Conclusively, it has been identified that MWCNT and Au are superior nanofluids for advanced radiative oncological treatments. These nanofluids have the potential to enhance plasma transportation, thermal regulation, and aetilogical disease management. The present study provides significant findings on enhancing the radiation performance in MHD micropumps through utilization of blood-based hybrid nanofluids, thereby offering potential advantages to the domain of biomedical engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...