Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Transl Med ; 21(1): 604, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679770

RESUMO

BACKGROUND: Neuroblastoma (NB) and pheochromocytoma/paraganglioma (PHEO/PGL) are neuroendocrine tumors. Imaging of these neoplasms is performed by scintigraphy after injection of radiolabeled meta-iodobenzylguanidine (mIBG), a norepinephrine analog taken up by tumoral cells through monoamine transporters. The pharmacological induction of these transporters is a promising approach to improve the imaging and therapy (theranostics) of these tumors. METHODS: Transporters involved in mIBG internalization were identified by using transfected Human Embryonic Kidney (HEK) cells. Histone deacetylase inhibitors (HDACi) and inhibitors of the PI3K/AKT/mTOR pathway were tested in cell lines to study their effect on mIBG internalization. Studies in xenografted mice were performed to assess the effect of the most promising HDACi on 123I-mIBG uptake. RESULTS: Transfected HEK cells demonstrated that the norepinephrine and dopamine transporter (NET and DAT) avidly internalizes mIBG. Sodium-4-phenylbutyrate (an HDACi), CUDC-907 (a dual HDACi and PI3K inhibitor), BGT226 (a PI3K inhibitor) and VS-5584 and rapamycin (two inhibitors of mTOR) increased mIBG internalization in a neuroblastoma cell line (IGR-NB8) by 2.9-, 2.1-, 2.5-, 1.5- and 1.3-fold, respectively, compared with untreated cells. CUDC-907 also increased mIBG internalization in two other NB cell lines and in one PHEO cell line. We demonstrated that mIBG internalization occurs primarily through the NET. In xenografted mice with IGR-NB8 cells, oral treatment with 5 mg/kg of CUDC-907 increased the tumor uptake of 123I-mIBG by 2.3- and 1.9-fold at 4 and 24 h post-injection, respectively, compared to the untreated group. CONCLUSIONS: Upregulation of the NET by CUDC-907 lead to a better internalization of mIBG in vitro and in vivo.


Assuntos
Neuroblastoma , Tumores Neuroendócrinos , Humanos , Animais , Camundongos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , 3-Iodobenzilguanidina/farmacologia , 3-Iodobenzilguanidina/uso terapêutico , Fosfatidilinositol 3-Quinases , Medicina de Precisão , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/tratamento farmacológico
2.
Front Endocrinol (Lausanne) ; 13: 1027856, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531507

RESUMO

Introduction: Neuroblastoma (NB) is a pediatric cancer of the developing sympathetic nervous system. It produces and releases metanephrines, which are used as biomarkers for diagnosis in plasma and urine. However, plasma catecholamine concentrations remain generally normal in children with NB. Thus, unlike pheochromocytoma and paraganglioma (PHEO/PGL), two other non-epithelial neuroendocrine tumors, hypertension is not part of the usual clinical picture of patients with NB. This suggests that the mode of production and secretion of catecholamines and metanephrines in NB is different from that in PHEO/PGL, but little is known about these discrepancies. Here we aim to provide a detailed comparison of the biosynthesis, metabolism and storage of catecholamines and metanephrines between patients with NB and PHEO. Method: Catecholamines and metanephrines were quantified in NB and PHEO/PGL patients from plasma and tumor tissues by ultra-high pressure liquid chromatography tandem mass spectrometry. Electron microscopy was used to quantify neurosecretory vesicles within cells derived from PHEO tumor biopsies, NB-PDX and NB cell lines. Chromaffin markers were detected by qPCR, IHC and/or immunoblotting. Results: Plasma levels of metanephrines were comparable between NB and PHEO patients, while catecholamines were 3.5-fold lower in NB vs PHEO affected individuals. However, we observed that intratumoral concentrations of metanephrines and catecholamines measured in NB were several orders of magnitude lower than in PHEO. Cellular and molecular analyses revealed that NB cell lines, primary cells dissociated from human tumor biopsies as well as cells from patient-derived xenograft tumors (NB-PDX) stored a very low amount of intracellular catecholamines, and contained only rare neurosecretory vesicles relative to PHEO cells. In addition, primary NB expressed reduced levels of numerous chromaffin markers, as compared to PHEO/PGL, except catechol O-methyltransferase and monoamine oxidase A. Furthermore, functional assays through induction of chromaffin differentiation of the IMR32 NB cell line with Bt2cAMP led to an increase of neurosecretory vesicles able to secrete catecholamines after KCl or nicotine stimulation. Conclusion: The low amount of neurosecretory vesicles in NB cytoplasm prevents catecholamine storage and lead to their rapid transformation by catechol O-methyltransferase into metanephrines that diffuse in blood. Hence, in contrast to PHEO/PGL, catecholamines are not secreted massively in the blood, which explains why systemic hypertension is not observed in most patients with NB.


Assuntos
Neoplasias das Glândulas Suprarrenais , Hipertensão , Neuroblastoma , Paraganglioma , Feocromocitoma , Criança , Humanos , Catecol O-Metiltransferase/análise , Metanefrina/análise , Metanefrina/metabolismo , Feocromocitoma/metabolismo , Neoplasias das Glândulas Suprarrenais/diagnóstico , Biomarcadores
3.
Clin Chim Acta ; 535: 19-26, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35963304

RESUMO

Serotonin is transformed into melatonin under the control of the light/dark cycle, representing a cornerstone of circadian rhythmicity. Serotonin also undergoes extensive metabolism to produce 5-hydroxyindoleacetic acid (5-HIAA), a biomarker for the diagnosis and monitoring of serotonin secreting neuroendocrine tumors (NETs). While serotonin, melatonin and their metabolites are part of an integrated comprehensive system, human observations about their respective plasma concentrations are still limited. We report here for the first time a multiplex UHPLC-MS/MS assay for the quantification of serotonin, 5-HIAA, 5-hydroxytryptophol (5-HTPL), N-acetyl-serotonin (NAS), Mel, 6-OH-Mel, 5-methoxytryptamine (5-MT), 5-methoxytryptophol (5-MTPL), and 5-methoxyindoleacetic acid (5-MIAA) in human plasma. Analytes were extracted by protein precipitation and solid phase extraction. Plasma concentrations for these analytes were determined in 102 healthy volunteers. The LLOQ of the assay ranges from 2.2 nM for serotonin to 1.0 pM for 6-OH-Mel. This sensitivity enables the quantification of circulating serotonin, 5-HIAA, NAS, Mel, and 5-MIAA, even at their lowest diurnal concentrations. This assay will enable specific, precise and accurate measurement of serotonin, Mel and their metabolites to draw a detailed picture of this complex pineal metabolism, allowing a dynamic understanding of these pathways and providing promising biomarkers and a metabolic signature for serotonin-secreting NETs.

4.
Clin Chim Acta ; 534: 146-155, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35905838

RESUMO

Neuropeptide Y (NPY1-36) is a vasoconstrictor peptide co-secreted with catecholamines by sympathetic nerves, the adrenal medulla, and neoplasms such as pheochromocytomas and paragangliomas (PPGLs). It is produced by the intracellular cleavage of proNPY and metabolized into multiple fragments with distinct biological activities. NPY immunoassays for PPGL have a diagnostic sensitivity ranging from 33 to 100%, depending on the antibody used. We have validated a multiplex micro-UHPLC-MS/MS assay for the specific and sensitive quantification of proNPY, NPY1-39, NPY1-37, NPY1-36, NPY2-36, NPY3-36, NPY1-35, NPY3-35, and the C-flanking peptide of NPY (CPON) (collectively termed NPYs), and determined the NPYs reference intervals and concentrations in 32 PPGL patients before, during, and after surgery. Depending on the peptide measured, NPYs were above the upper reference limit (URL) in 20% to 67% of patients, whereas plasma free metanephrine and normetanephrine, the gold standard for PPGL, were above the URL in 40% and 87% of patients, respectively. Age, sex, tachycardia, and tumor localization were not correlated with NPYs. Plasma free metanephrines performed better than NPYs in the detection of PPGL, but NPYs may be a substitute for an early diagnosis of PPGL for patients that suffer from severe kidney impairment or receiving treatments that interfere with catecholamine reuptake.


Assuntos
Neoplasias das Glândulas Suprarrenais , Paraganglioma , Feocromocitoma , Neoplasias das Glândulas Suprarrenais/diagnóstico , Voluntários Saudáveis , Humanos , Metanefrina , Neuropeptídeo Y/metabolismo , Paraganglioma/diagnóstico , Feocromocitoma/diagnóstico , Precursores de Proteínas , Espectrometria de Massas em Tandem
5.
Front Endocrinol (Lausanne) ; 13: 842968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282466

RESUMO

Background: The selectivity index (SI) of cortisol is used to document correct catheter placement during adrenal vein sampling (AVS) in patients with primary aldosteronism (PA). We aimed to determine the cutoff values of the SIs based on cortisol, free metanephrine, and the free-to-total metanephrine ratio (FTMR) using an adapted AVS protocol in combination with CT. Methods: Adults with PA and referred for AVS were recruited in two hypertension centers. The cortisol and free metanephrine-derived SIs were calculated as the concentration of the analyte in adrenal veins divided by the concentration of the analyte in the distal vena cava. The FTMR-derived SI was calculated as the concentration of free metanephrine in the adrenal vein divided by that of total metanephrine in the ipsilateral adrenal vein. The AVS was classified as an unequivocal radiological success (uAVS) if the tip of the catheter was seen in the adrenal vein. The SI cutoffs of each index marker were established using receiver operating characteristic curve analysis. Results: Out of 125 enrolled patients, 65 patients had an uAVS. The SI cutoffs were 2.6 for cortisol, 10.0 for free metanephrine, 0.31 for the FTMR on the left side, and 2.5, 9.9, and 0.25 on the right side. Compared to free metanephrine and the FTMR, cortisol misclassified AVS as unsuccessful in 36.6% and 39.0% of the cases, respectively. Conclusion: This study is the first to calculate the SIs of cortisol, free metanephrine, and the FTMR indices for the AVS procedure. It confirms that free metanephrine-based SIs are better than those based on cortisol.


Assuntos
Hiperaldosteronismo , Glândulas Suprarrenais , Adulto , Aldosterona , Catéteres , Humanos , Hidrocortisona , Hiperaldosteronismo/diagnóstico , Metanefrina
6.
Nucleic Acids Res ; 49(9): 5159-5176, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33893802

RESUMO

The eIF4E are a family of initiation factors that bind the mRNA 5' cap, regulating the proteome and the cellular phenotype. eIF4E1 mediates global translation and its activity is controlled via the PI3K/AKT/mTOR pathway. mTOR down-regulation results in eIF4E1 sequestration into an inactive complex with the 4E binding proteins (4EBPs). The second member, eIF4E2, regulates the translatome during hypoxia. However, the exact function of the third member, eIF4E3, has remained elusive. We have dissected its function using a range of techniques. Starting from the observation that it does not interact with 4EBP1, we demonstrate that eIF4E3 recruitment into an eIF4F complex occurs when Torin1 inhibits the mTOR pathway. Ribo-seq studies demonstrate that this complex (eIF4FS) is translationally active during stress and that it selects specific mRNA populations based on 5' TL (UTR) length. The interactome reveals that it associates with cellular proteins beyond the cognate initiation factors, suggesting that it may have 'moon-lighting' functions. Finally, we provide evidence that cellular metabolism is altered in an eIF4E3 KO background but only upon Torin1 treatment. We propose that eIF4E3 acts as a second branch of the integrated stress response, re-programming the translatome to promote 'stress resistance' and adaptation.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , Biossíntese de Proteínas , Estresse Fisiológico/genética , Animais , Células Cultivadas , Fatores de Iniciação em Eucariotos/metabolismo , Humanos , Camundongos , Naftiridinas/farmacologia , Capuzes de RNA/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores
7.
Oncotarget ; 12(1): 49-60, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33456713

RESUMO

Metanephrines (MNs; normetanephrine (NMN), metanephrine (MN) and methoxytyramine (MT)) detected in urine or plasma represent the best biomarker for neuroblastoma (NB) diagnosis, however the metabolism of both catecholamine (CAT) and MNs remains enigmatic in NB. Using patient-derived xenograft (PDX) models derived from primary NB cells, we observed that the plasma levels of MNs in NB-PDX-bearing mice were comparable as in patients. Interestingly, murine plasma displayed an elevated fraction of glucuronidated forms of MNs relative to human plasma where sulfonated forms prevail. In tumors, the concentration ranges of MNs and CAT and the expression levels of the main genes involved in catecholamine metabolism were similar between NB-PDX and human NB tissues. Likewise, plasma and intratumoral profiles of individual MNs, with increased levels of MT and NMN relative to MN, were also conserved in mouse models as in patients. We further demonstrated the downregulation of the Phenylethanolamine N-Methyltransferase gene in NB biopsies and in NB-PDX explaining this biochemical phenotype, and giving a rational to the low levels of epinephrine and MN measured in NB affected patients. Thus, our subcutaneous murine NB-PDX models not only reproduce the phenotype of primary NB tumors, but also the metabolism of catecholamine as observed in patients. This may potentially open new avenues in preclinical studies for the follow up of novel therapeutic options for NB through the quantification of plasma MNs.

8.
Molecules ; 25(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932783

RESUMO

Targeted radionuclide therapy of somatostatin receptor (SST)-expressing tumors is only partially addressed by the established somatostatin analogs having an affinity for the SST subtype 2 (SST2). Aiming to target a broader spectrum of tumors, we evaluated the bis-iodo-substituted somatostatin analog ST8950 ((4-amino-3-iodo)-d-Phe-c[Cys-(3-iodo)-Tyr-d-Trp-Lys-Val-Cys]-Thr-NH2), having subnanomolar affinity for SST2 and SST5, labeled with [177Lu]Lu3+ via the chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). Human Embryonic Kidney (HEK) cells stably transfected with the human SST2 (HEK-SST2) and SST5 (HEK-SST5) were used for in vitro and in vivo evaluation on a dual SST2- and SST5-expressing xenografted mouse model. natLu-DOTA-ST8950 showed nanomolar affinity for both subtypes (IC50 (95% confidence interval): 0.37 (0.22-0.65) nM for SST2 and 3.4 (2.3-5.2) for SST5). The biodistribution of [177Lu]Lu-DOTA-ST8950 was influenced by the injected mass, with 100 pmol demonstrating lower background activity than 10 pmol. [177Lu]Lu-DOTA-ST8950 reached its maximal uptake on SST2- and SST5-tumors at 1 h p.i. (14.17 ± 1.78 and 1.78 ± 0.35%IA/g, respectively), remaining unchanged 4 h p.i., with a mean residence time of 8.6 and 0.79 h, respectively. Overall, [177Lu]Lu-DOTA-ST8950 targets SST2-, SST5-expressing tumors in vivo to a lower extent, and has an effective dose similar to clinically used radiolabeled somatostatin analogs. Its main drawbacks are the low uptake in SST5-tumors and the persistent kidney uptake.


Assuntos
Neoplasias Gastrointestinais/tratamento farmacológico , Lutécio/química , Radioisótopos/química , Receptores de Somatostatina/genética , Somatostatina/análogos & derivados , Animais , Células HEK293 , Humanos , Concentração Inibidora 50 , Rim/metabolismo , Camundongos , Transplante de Neoplasias , Octreotida/análogos & derivados , Peptídeos/química , Ligação Proteica , Radiometria , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único
9.
EJNMMI Res ; 10(1): 90, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32757150

RESUMO

BACKGROUND: Somatostatin receptor (SST) targeting, specifically of the subtype 2 (SST2), with radiolabeled somatostatin analogs, is established for imaging and treatment of neuroendocrine tumors. Owing to the concomitant and heterogeneous expression of several subtypes on the same tumor, analogs targeting more subtypes than SST2 potentially target a broader spectrum of tumors and/or increase the uptake of a given tumor. The analog ST8950 ((4-amino-3-iodo)-D-Phe-c[Cys-(3-iodo)-Tyr-D-Trp-Lys-Val-Cys]-Thr-NH2), bearing 2 iodo-amino acids, exhibits sub-nanomolar affinity to SST2 and SST5. We report herein the development and preclinical evaluation of DOTA-ST8950 labeled with 68Ga, for imaging SST2- and SST5-expressing tumors. Comparative in vitro and in vivo studies were performed with the de-iodinated DOTA-ST8951 ((4-amino)-D-Phe-c[Cys-Tyr-D-Trp-Lys-Val-Cys]-Thr-NH2) and with the reference compounds DOTA-TATE (SST2 selective) and DOTA-NOC (for SST2 and SST5). RESULTS: Compared with natGa-DOTA-NOC, natGa-DOTA-ST8950 exhibited higher affinity to SST2 and SST5 (IC50 (95%CI), nM = 0.32 (0.20-0.50) and 1.9 (1.1-3.1) vs 0.70 (0.50-0.96) and 3.4 (1.8-6.2), respectively), while natGa-DOTA-ST8951 lost affinity for both subtypes. natGa-DOTA-ST8950 had the same potency for inducing SST2-mediated cAMP accumulation as natGa-DOTA-TATE and slightly better than natGa-DOTA-NOC (EC50, nM = 0.46 (0.23-0.92) vs 0.47 (0.15-1.5) vs 0.59 (0.18-1.9), respectively). [67Ga]Ga-DOTA-ST8950 had a similar internalization rate as [67Ga]Ga-DOTA-NOC in SST2-expressing cells (12.4 ± 1.6% vs 16.6 ± 2.2%, at 4 h, p = 0.0586). In vivo, [68Ga]Ga-DOTA-ST8950 showed high and specific accumulation in SST2- and SST5-expressing tumors, comparable with [68Ga]Ga-DOTA-NOC (26 ± 8 vs 30 ± 8 %IA/g, p = 0.4630 for SST2 and 15 ± 6 vs 12 ± 5 %IA/g, p = 0.3282, for SST5, 1 h p.i.) and accumulation in the SST-positive tissues, the kidneys and the liver. PET/CT images of [68Ga]Ga-DOTA-ST8950, performed in a dual HEK-SST2 and HEK-SST5 tumor xenografted model, clearly visualized both tumors and illustrated high tumor-to-background contrast. CONCLUSIONS: [68Ga]Ga-DOTA-ST8950 reveals its potential for PET imaging SST2- and SST5-expressing tumors. It compares favorably with the clinically used [68Ga]Ga-DOTA-NOC in terms of tumor uptake; however, its uptake in the liver remains a challenge for clinical translation. In addition, this study reveals the essential role of the iodo-substitutions in positions 1 and 3 of [68Ga]Ga-DOTA-ST8950 for maintaining affinity to SST2 and SST5, as the de-iodinated [68Ga]Ga-DOTA-ST8951 lost affinity for both receptor subtypes.

11.
Neuropeptides ; 68: 84-89, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29523357

RESUMO

BACKGROUND: Somatostatin analogs (SSAs) are first-line medical therapy for the treatment of acromegaly and neuroendocrine tumors that express somatostatin receptors (SSTR). Somatostatin suppresses secretion of a large number of hormones through the stimulation of the five SSTR. However, unbalanced inhibition of secretion as observed with the highly potent SSAs pasireotide causes hyperglycaemia mainly by inhibiting insulin secretion. In contrast, AP102 a new SSAs has neutral effect on blood glucose while suppressing GH secretion. Our objective was to establish the cellular effects of AP102 on SSTR2 and SSTR5 that may explain the differences observed between AP102 and other SSAs. METHODS: We compared the binding and agonist activity of AP102 with somatostatin-14, octreotide and pasireotide in HEK293 cells transfected with human SSTR2 and SSTR5 receptors. SSAs signal transduction effects (cAMP concentrations) were measured in forskolin-treated cells in the presence of SSAs. Proliferation and apoptotic effects were determined and binding assays were performed using 125I- somatostatin-14. RESULTS: AP102 has comparable affinity and agonist effect to octreotide at SSTR2 (IC50's of 112 pM and 244 pM, respectively; EC50's of 230 pM and 210 pM, respectively) in contrast to pasireotide that exhibits a 12-27 fold higher IC50 (3110 pM) and about 5-fold higher EC50 (1097 pM). At SSTR5, AP102 has much higher affinity and stimulating effect than octreotide (IC50's of 773 pM and 16,737 pM, respectively; EC50's of 8526 pM and 26,800 pM), and an intermediate affinity and agonist effect between octreotide and pasireotide. AP102, octreotide and pasireotide have variable anti-proliferative effects on HEK cells transfected with SSTR2 and SSTR5. CONCLUSION: AP102 is a new SSA that better reduces signaling at SSTR2 than SSTR5 and prevents cell proliferation at both receptors. The euglycaemic effect of AP102 observed in preclinical studies may be related to this intermediate agonistic potency between pasireotide and octreotide at SSTR2 and SSTR5.


Assuntos
Receptores de Somatostatina/metabolismo , Somatostatina/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Receptores de Somatostatina/agonistas , Transdução de Sinais , Somatostatina/análogos & derivados
13.
Hormones (Athens) ; 15(1): 106-12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26188236

RESUMO

INTRODUCTION: The efficacy of Gamma Knife surgery (GKS) in local tumor control of non-secreting paragangliomas (PGLs) has been fully described by previous studies. However, with regard to secreting PGL, only one previous case report exists advocating its efficacy at a biological level. CASE REPORT: The aims of this study were: 1) to evaluate the safety/efficacy of GKS in a dopamine-secreting PGL; 2) to investigate whether the biological concentrations of free methoxytyramine could be used as a marker of treatment efficacy during the follow-up. We describe the case of a 62-year-old man diagnosed with left PGL. He initially underwent complete surgical excision. Thirty months after, he developed recurrent biological and neuroradiological disease; the most sensitive biomarker for monitoring the disease, concentration of plasma free methoxytyramine, started to increase. GKS was performed at a maximal marginal dose of 16 Gy. During the following 30 months, concentration of free methoxytyramine gradually decreased from 0.14 nmol/l (2*URL) before GKS to 0.09 nmol/l, 6 months after GKS and 0.07 nmol/l at the last follow-up after GKS (1.1*URL), confirming the efficacy of the treatment. Additionally, at 30 months there was approximately 36.6% shrinkage from the initial target volume. CONCLUSION: The GKS treatment was safe and effective, this being confirmed clinically, neuroradiologically and biologically. The case illustrates the importance of laboratory tests taking into account methoxytyramine when analyzing biological samples to assess the biochemical activity of a PGL. In addition, the identification of methoxytyramine as a unique positive biomarker could designate it for the monitoring of tumor relapse after treatments, including Gamma Knife surgery.


Assuntos
Dopamina/metabolismo , Neoplasias de Cabeça e Pescoço/cirurgia , Paraganglioma/cirurgia , Radiocirurgia , Dopamina/análogos & derivados , Dopamina/sangue , Dopamina/urina , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva , Fatores de Tempo
14.
PLoS One ; 10(5): e0125426, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25946206

RESUMO

Pheochromocytoma (PHEO) and paraganglioma (PGL) are catecholamine-producing neuroendocrine tumors that arise respectively inside or outside the adrenal medulla. Several reports have shown that adrenal glucocorticoids (GC) play an important regulatory role on the genes encoding the main enzymes involved in catecholamine (CAT) synthesis i.e. tyrosine hydroxylase (TH), dopamine ß-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT). To assess the influence of tumor location on CAT metabolism, 66 tissue samples (53 PHEO, 13 PGL) and 73 plasma samples (50 PHEO, 23 PGL) were studied. Western blot and qPCR were performed for TH, DBH and PNMT expression. We found a significantly lower intra-tumoral concentration of CAT and metanephrines (MNs) in PGL along with a downregulation of TH and PNMT at both mRNA and protein level compared with PHEO. However, when PHEO were partitioned into noradrenergic (NorAd) and mixed tumors based on an intra-tumoral CAT ratio (NE/E >90%), PGL and NorAd PHEO sustained similar TH, DBH and PNMT gene and protein expression. CAT concentration and composition were also similar between NorAd PHEO and PGL, excluding the use of CAT or MNs to discriminate between PGL and PHEO on the basis of biochemical tests. We observed an increase of TH mRNA concentration without correlation with TH protein expression in primary cell culture of PHEO and PGL incubated with dexamethasone during 24 hours; no changes were monitored for PNMT and DBH at both mRNA and protein level in PHEO and PGL. Altogether, these results indicate that long term CAT synthesis is not driven by the close environment where the tumor develops and suggest that GC alone is not sufficient to regulate CAT synthesis pathway in PHEO/PGL.


Assuntos
Catecolaminas/metabolismo , Epinefrina/biossíntese , Norepinefrina/metabolismo , Paraganglioma/metabolismo , Feocromocitoma/metabolismo , Adolescente , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Adulto , Idoso , Criança , Dexametasona/farmacologia , Dopamina beta-Hidroxilase/biossíntese , Dopamina beta-Hidroxilase/genética , Feminino , Humanos , Masculino , Metanefrina/metabolismo , Pessoa de Meia-Idade , Paraganglioma/genética , Feniletanolamina N-Metiltransferase/biossíntese , Feniletanolamina N-Metiltransferase/genética , Feocromocitoma/genética , RNA Mensageiro/biossíntese , Células Tumorais Cultivadas , Tirosina 3-Mono-Oxigenase/biossíntese , Tirosina 3-Mono-Oxigenase/genética , Adulto Jovem
15.
Clin Chim Acta ; 430: 125-8, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24418619

RESUMO

BACKGROUND: Total (i.e. free+sulfated) metanephrines in plasma is a biomarker for the diagnosis of pheochromocytoma/paraganglioma. Sulfated metanephrines must be completely deconjugated by perchloric acid hydrolysis or sulfatase treatment prior to analytical measurement to enable quantification by current techniques. In this report, we compare the yield and efficiency of both methods. METHODS: The deconjugation rate of synthetic sulfated metanephrines (normetanephrine (S-NMN), metanephrine (S-MN) and methoxytyramine (S-MT)) spiked in charcoal-stripped plasma was determined by boiling perchloric acid and compared to sulfatase treatment. Total plasma metanephrines (MN, NMN and MT) were also determined in patient samples by both methods. RESULTS: The complete deconjugation of sulfated metanephrines is achieved after 30 min incubation with 0.1M boiling perchloric acid or upon sulfatase treatment. Ten minutes of acid hydrolysis (gold-standard) leads to a 30% underestimation of metanephrine concentrations. The enzyme hydrolysis is time and amount of sulfatase dependent. The rate of hydrolysis is analyte-dependent (MT>>NMN>MN), although it must contain at least 0.8 U/ml of sample. The Deming regression curves comparing acid versus enzyme hydrolysis on patient samples assessed that both methods gave similar unbiased concentrations. CONCLUSION: Enzyme and acid treatments are equivalent and efficient for removing sulfate from metanephrines as long as the optimal protocol is used for each method. However, the gold standard method for acid hydrolysis at 10 min established more than 20 years ago was not satisfactory regarding the hydrolysis of metanephrines in plasma.


Assuntos
Metanefrina/sangue , Metanefrina/química , Percloratos/química , Sulfatases/metabolismo , Humanos , Hidrólise/efeitos dos fármacos , Metanefrina/metabolismo , Percloratos/farmacologia
16.
Anal Chem ; 85(7): 3539-44, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23432705

RESUMO

Plasma catecholamines provide a reliable biomarker of sympathetic activity. The low circulating concentrations of catecholamines and analytical interferences require tedious sample preparation and long chromatographic runs to ensure their accurate quantification by HPLC with electrochemical detection. Published or commercially available methods relying on solid phase extraction technology lack sensitivity or require derivatization of catecholamine by hazardous reagents prior to tandem mass spectrometry (MS) analysis. Here, we manufactured a novel 96-well microplate device specifically designed to extract plasma catecholamines prior to their quantification by a new and highly sensitive ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. Processing time, which included sample purification on activated aluminum oxide and elution, is less than 1 h per 96-well microplate. The UPLC-MS/MS analysis run time is 2.0 min per sample. This UPLC-MS/MS method does not require a derivatization step, reduces the turnaround time by 10-fold compared to conventional methods used for routine application, and allows catecholamine quantification in reduced plasma sample volumes (50-250 µL, e.g., from children and mice).


Assuntos
Catecolaminas/sangue , Ensaios de Triagem em Larga Escala/instrumentação , Extração em Fase Sólida/instrumentação , Adulto , Cromatografia Líquida de Alta Pressão/métodos , Desenho de Equipamento , Feminino , Ensaios de Triagem em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho da Amostra , Sensibilidade e Especificidade , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Adulto Jovem
17.
Chirality ; 25(1): 28-34, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23008099

RESUMO

(1R)-Normetanephrine is the natural stereoisomeric substrate for sulfotransferase 1A3 (SULT1A3)-catalyzed sulfonation. Nothing appears known on the enantioselectivity of the reaction despite its potential significance in the metabolism of adrenergic amines and in clinical biochemistry. We confronted the kinetic parameters of the sulfoconjugation of synthetic (1R)-normetanephrine and (1S)-normetanephrine by recombinant human SULT1A3 to a docking model of each normetanephrine enantiomer with SULT1A3 and the 3'-phosphoadenosine-5'-phosphosulfate cofactor on the basis of molecular modeling and molecular dynamics simulations of the stability of the complexes. The K(M), V(max), and k(cat) values for the sulfonation of (1R)-normetanephrine, (1S)-normetanephrine, and racemic normetanephrine were similar. In silico models were consistent with these findings as they showed that the binding modes of the two enantiomers were almost identical. In conclusion, SULT1A3 is not substrate-enantioselective toward normetanephrine, an unexpected finding explainable by a mutual adaptability between the ligands and SULT1A3 through an "induced-fit model" in the catalytic pocket.


Assuntos
Arilsulfotransferase/metabolismo , Normetanefrina/metabolismo , Arilsulfotransferase/química , Catálise , Humanos , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Normetanefrina/síntese química , Normetanefrina/química , Estereoisomerismo
18.
J Clin Endocrinol Metab ; 97(8): 2773-81, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22569243

RESUMO

CONTEXT: The high diagnostic performance of plasma-free metanephrines (metanephrine and normetanephrine) (MN) for pheochromocytoma (PHEO) results from the tumoral expression of catechol-O-methyltransferase (COMT), the enzyme involved in O-methylation of catecholamines (CAT). Intriguingly, metanephrine, in contrast to epinephrine, is not remarkably secreted during a stress in hypertensive or normotensive subjects, whereas in PHEO patients CAT and MN are both raised to high levels. Because epinephrine and metanephrine are almost exclusively produced by the adrenal medulla, this suggests distinct CAT metabolism in chromaffin cells and pheochromocytes. OBJECTIVE: The objective of the study was to compare CAT metabolism between adrenal medulla and PHEO tissue regarding related enzyme expression including monoamine oxidases (MAO) and COMT. DESIGN: A multicenter comparative study was conducted. STUDY PARTICIPANTS: The study included 21 patients with a histologically confirmed PHEO and eight adrenal glands as control. MAIN OUTCOME MEASURES: CAT, dihydroxyphenol-glycol, 3,4-dihydroxyphenylacetic acid, and MN were measured in adrenal medulla and PHEO tissue. Western blot, quantitative RT-PCR and immunofluorescence studies for MAOA, MAOB, tyrosine hydroxylase, dopamine ß-hydroxylase, L-amino acid decarboxylase, and COMT were applied on tissue homogenates and cell preparations. RESULTS: At both the protein and mRNA levels, MAOA and COMT are detected less often in PHEO compared with adrenal medulla, conversely to tyrosine hydroxylase, L-amino acid decarboxylase, and dopamine ß-hydroxylase, much more expressed in tumor tissue. MAOB protein is detected less often in tumor but not differently expressed at the mRNA level. Dihydroxyphenol-glycol is virtually absent from tumor, whereas MN, produced by COMT, rises to 4.6-fold compared with adrenal medulla tissue. MAOA down-regulation was observed in 100% of tumors studied, irrespectively of genetic alteration identified; on the other hand, MAOA was strongly expressed in all adrenal medulla collected independently of age, gender, or late sympathetic activation of the deceased donor. CONCLUSION: High concentrations of MN in tumor do not only arise from CAT overproduction but also from low MAOA expression, resulting in higher substrate availability for COMT.


Assuntos
Neoplasias das Glândulas Suprarrenais/metabolismo , Metanefrina/metabolismo , Monoaminoxidase/fisiologia , Feocromocitoma/metabolismo , Adolescente , Medula Suprarrenal/metabolismo , Adulto , Idoso , Catecol O-Metiltransferase/análise , Catecol O-Metiltransferase/fisiologia , Catecolaminas/metabolismo , Regulação para Baixo , Feminino , Regulação Enzimológica da Expressão Gênica , Humanos , Masculino , Metanefrina/análise , Pessoa de Meia-Idade , Monoaminoxidase/análise , Monoaminoxidase/genética
19.
Clin Chim Acta ; 413(11-12): 998-1003, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22406181

RESUMO

BACKGROUND: The quantification of total (free+sulfated) metanephrines in urine is recommended to diagnose pheochromocytoma. Urinary metanephrines include metanephrine itself, normetanephrine and methoxytyramine, mainly in the form of sulfate conjugates (60-80%). Their determination requires the hydrolysis of the sulfate ester moiety to allow electrochemical oxidation of the phenolic group. Commercially available urine calibrators and controls contain essentially free, unhydrolysable metanephrines which are not representative of native urines. The lack of appropriate calibrators may lead to uncertainty regarding the completion of the hydrolysis of sulfated metanephrines, resulting in incorrect quantification. METHODS: We used chemically synthesized sulfated metanephrines to establish whether the procedure most frequently recommended for commercial kits (pH 1.0 for 30 min over a boiling water bath) ensures their complete hydrolysis. RESULTS: We found that sulfated metanephrines differ in their optimum pH to obtain complete hydrolysis. Highest yields and minimal variance were established for incubation at pH 0.7-0.9 during 20 min. CONCLUSION: Urinary pH should be carefully controlled to ensure an efficient and reproducible hydrolysis of sulfated metanephrines. Synthetic sulfated metanephrines represent the optimal material for calibrators and proficiency testing to improve inter-laboratory accuracy.


Assuntos
Metanefrina/química , Metanefrina/urina , Neoplasias das Glândulas Suprarrenais/urina , Calibragem , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Metanefrina/síntese química , Feocromocitoma/urina , Sulfatos/química , Incerteza
20.
FEBS Lett ; 584(11): 2409-14, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20412808

RESUMO

Prions are the unconventional infectious agents responsible for prion diseases, which are composed mainly by the misfolded prion protein (PrP(Sc)) that replicates by converting the host associated cellular prion protein (PrP(C)). Several lines of evidence suggest that other cellular components participate in prion conversion, however, the identity or even the chemical nature of such factors are entirely unknown. In this article we study the conversion factor activity by complementation of a PMCA procedure employing purified PrP(C) and PrP(Sc). Our results show that the conversion factor is present in all major organs of diverse mammalian species, and is predominantly located in the lipid raft fraction of the cytoplasmic membrane. On the other hand, it is not present in the lower organisms tested (yeast, bacteria and flies). Surprisingly, treatments that eliminate the major classes of chemical molecules do not affect conversion activity, suggesting that various different compounds may act as conversion factor in vitro. This conclusion is further supported by experiments showing that addition of various classes of molecules have a small, but detectable effect on enhancing prion replication in vitro. More research is needed to elucidate the identity of these factors, their detailed mechanism of action and whether or not they are essential component of the infectious particle.


Assuntos
Células/metabolismo , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Príons/genética , Príons/metabolismo , Animais , Cricetinae , Camundongos , Príons/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...