Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(4): 198, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558101

RESUMO

Micro- plastics (MPs) pose significant global threats, requiring an environment-friendly mode of decomposition. Microbial-mediated biodegradation and biodeterioration of micro-plastics (MPs) have been widely known for their cost-effectiveness, and environment-friendly techniques for removing MPs. MPs resistance to various biocidal microbes has also been reported by various studies. The biocidal resistance degree of biodegradability and/or microbiological susceptibility of MPs can be determined by defacement, structural deformation, erosion, degree of plasticizer degradation, metabolization, and/or solubilization of MPs. The degradation of microplastics involves microbial organisms like bacteria, mold, yeast, algae, and associated enzymes. Analytical and microbiological techniques monitor microplastic biodegradation, but no microbial organism can eliminate microplastics. MPs can pose environmental risks to aquatic and human life. Micro-plastic biodegradation involves fragmentation, assimilation, and mineralization, influenced by abiotic and biotic factors. Environmental factors and pre-treatment agents can naturally degrade large polymers or induce bio-fragmentation, which may impact their efficiency. A clear understanding of MPs pollution and the microbial degradation process is crucial for mitigating its effects. The study aimed to identify deteriogenic microorganism species that contribute to the biodegradation of micro-plastics (MPs). This knowledge is crucial for designing novel biodeterioration and biodegradation formulations, both lab-scale and industrial, that exhibit MPs-cidal actions, potentially predicting MPs-free aquatic and atmospheric environments. The study emphasizes the urgent need for global cooperation, research advancements, and public involvement to reduce micro-plastic contamination through policy proposals and improved waste management practices.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Biodegradação Ambiental , Indústrias , Técnicas Microbiológicas
2.
Biol Trace Elem Res ; 202(4): 1784-1801, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37464170

RESUMO

Grewia asiatica L. (phalsa) is a very prevalent berry in Pakistan and is consumed extensively as raw or in the form of juice. Here, for the first time, we assessed phalsa from Pakistan in terms of variations in macro and micro minerals, nutrients, and bio-active phyto-constituents including total phenolic and anthocyanin contents at different fruit developmental stages. It was found that the sugars in phalsa increased from D1 (small at the initial fruit setting stage) to D6 development stage (fully ripened fruit) where sugars at D5 (near to fully ripe) and D6 stages were many times greater than at D1, D2 (unripe close to full-size completion), D3 (close to semi ripe), and D4 stage (semi ripened and full-size attainment). Total acidity of was declined in all developmental stages, where the D1 stage displayed maximum and D6 with the lowest acidity. Ascorbic acid was decreased from D1 to D2 and then increased gradually from D3 to D5 stages. At the D6 stage, again a steep decline in ascorbic acid was observed. The total phenolics (mg gallic acid equivalents/100g) at stage D6 were higher (136.02 ± 1.17), whereas D1 being the lowermost in total phenolic content (79.89 ± 1.72). For anthocyanins (mg/100g), an increasing pattern of changes was observed in all stages of phalsa fruit where the D1 stage showed lower (13.97 ± 4.84) anthocyanin contents which then increased gradually at stage D2 (67.79 ± 6.73), but increased sharply at D3 (199.66 ± 4.90), D4 (211.02 ± 18.85), D5 (328.41 ±14.96) and D6 (532.30 ± 8.51) stages. A total of four anthocyanins such as cyanidin, delphidine-3-glucoside, pelargonidin, and malvidin in phalsa were identified using HPLC procedures, and a significant > 90 % DPPH inhibition in phalsa was observed at the D5 and D6 development stages. The macro and micro minerals including Ni, Zn, Fe, Ca, Cu, Mg, Na, P, and K contents were decreased from initial (D1) stage to the final (D6) development stage, while only Fe displayed an increasing trend from the initial to final fruit development stages (D1-D6). Conclusively, these findings could be of great interest for patients who are intended to consume phalsa as adjuvant therapy against diabetes and metabolic syndromes and other diseases involving reactive oxygen species with minimum metal toxicity.


Assuntos
Grewia , Oligoelementos , Humanos , Antocianinas/análise , Frutas/química , Antioxidantes/farmacologia , Oligoelementos/análise , Grewia/química , Fenóis , Minerais/análise , Ácido Ascórbico , Açúcares
3.
BMC Endocr Disord ; 23(1): 244, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940936

RESUMO

BACKGROUND: Maintaining the quality of life is the main objective of managing type 2 diabetes (T2DM) (QoL). Since it is a key factor in patient motivation and adherence, treatment-related QoL has always been considered when choosing glucose-lowering medicines. The objective of the study was to evaluate the quality of life besides glycemic control among type 2 diabetes mellitus patients receiving Treviamet® & Treviamet XR® (Sitagliptin with Metformin) in routine care. METHODS: It was a prospective, open-label, non-randomized clinical trial including T2DM patients uncontrolled on Metformin therapy. All patients received Treviamet® & Treviamet XR® for six months. Sequential changes in QoL, fasting plasma glucose, HbA1c, body weight, and blood pressure were monitored from baseline to 3 consecutive follow-up visits. The frequency of adverse events (AEs) was also noted throughout the study. RESULTS: A total of 504 patients were screened; 188 completed all three follow-ups. The mean QoL score significantly declined from 57.09% at baseline to 33.64% at the 3rd follow-up visit (p < 0.01). Moreover, a significant decline in mean HbA1c and FPG levels was observed from baseline to 3rd follow-up visit (p < 0.01). Minor adverse events were observed, including abdominal discomfort, nausea, flatulence, and indigestion. Gender, HbA1c, diarrhea, and abdominal discomfort were significant predictors of a patient's QoL, as revealed by the Linear Regression Model (R2 = 0.265, F(16, 99) = 2.231). CONCLUSION: Treviamet® & Treviamet XR® significantly improved glycemic control (HbA1c levels) and QoL in T2DM patients without serious adverse events. TRIAL REGISTRATION: ClinicalTrials.gov identifier (NCT05167513), Date of registration: December 22, 2021.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Hipoglicemiantes/uso terapêutico , Qualidade de Vida , Hemoglobinas Glicadas , Controle Glicêmico , Estudos Prospectivos , Glicemia , Metformina/uso terapêutico , Fosfato de Sitagliptina/efeitos adversos , Quimioterapia Combinada
4.
Arch Microbiol ; 205(9): 321, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642791

RESUMO

Omega-3 fatty acids, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and α-linolenic acid (ALA), are essential polyunsaturated fatty acids with diverse health benefits. The limited conversion of dietary DHA necessitates its consumption as food supplements. Omega-3 fatty acids possess anti-arrhythmic and anti-inflammatory capabilities, contributing to cardiovascular health. Additionally, DHA consumption is linked to improved vision, brain, and memory development. Furthermore, omega-3 fatty acids offer protection against various health conditions, such as celiac disease, Alzheimer's, hypertension, thrombosis, heart diseases, depression, diabetes, and certain cancers. Fish oil from pelagic cold-water fish remains the primary source of omega-3 fatty acids, but the global population burden creates a demand-supply gap. Thus, researchers have explored alternative sources, including microbial systems, for omega-3 production. Microbial sources, particularly oleaginous actinomycetes, microalgae like Nannochloropsis and among microbial systems, Thraustochytrids stand out as they can store up to 50% of their dry weight in lipids. The microbial production of omega-3 fatty acids is a potential solution to meet the global demand, as these microorganisms can utilize various carbon sources, including organic waste. The biosynthesis of omega-3 fatty acids involves both aerobic and anaerobic pathways, with bacterial polyketide and PKS-like PUFA synthase as essential enzymatic complexes. Optimization of physicochemical parameters, such as carbon and nitrogen sources, pH, temperature, and salinity, plays a crucial role in maximizing DHA production in microbial systems. Overall, microbial sources hold significant promise in meeting the global demand for omega-3 fatty acids, offering an efficient and sustainable solution for enhancing human health.


Assuntos
Actinobacteria , Ácidos Graxos Ômega-3 , Humanos , Ácidos Docosa-Hexaenoicos , Vias Biossintéticas , Carbono
5.
R Soc Open Sci ; 10(4): 230104, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37035287

RESUMO

Urease enzyme is an infectious factor that provokes the growth and colonization of virulence pathogenic bacteria in humans. To overcome the deleterious effects of bacterial infections, inhibition of urease enzyme is one of the promising approaches. The current study is designed to synthesize new 1,2-benzothiazine-N-arylacetamide derivatives 5(a-n) that can effectively provide a new drug candidate to avoid bacterial infections by urease inhibition. After structural elucidation by FT-IR, proton and carbon-13 NMR and mass spectroscopy, the synthesized compounds 5(a-n) were investigated to evaluate their inhibitory potential against urease enzyme. In vitro analysis against positive control of thiourea indicated that all the synthesized compounds have strong inhibitory strengths as compared to the reference drug. Compound 5k, being the most potent inhibitor, strongly inhibited the urease enzymes and revealed an IC50 value of 9.8 ± 0.023 µM when compared with the IC50 of thiourea (22.3 ± 0.031 µM)-a far more robust inhibitory potential. Docking studies of 5k within the urease active site revealed various significant interactions such as H-bond, π-alkyl with amino acid residues like Val744, Lys716, Ala16, Glu7452, Ala37 and Asp730.

6.
Arch Microbiol ; 204(11): 672, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36251102

RESUMO

The growing population increases the need to develop advanced biological methods for utilizing renewable and sustainable resources to produce environmentally friendly biofuels. Currently, energy resources are limited for global demand and are constantly depleting and creating environmental problems. Some higher chain alcohols, like butanol and ethanol, processing similar properties to gasoline, can be alternate sources of biofuel. However, the industrial production of these alcohols remains challenging because they cannot be efficiently produced by microbes naturally. Therefore, butanol is the most interesting biofuel candidate with a higher octane number produced naturally by microbes through Acetone-Butanol-Ethanol fermentation. Feedstock selection as the substrate is the most crucial step in biobutanol production. Lignocellulosic biomass has been widely used to produce cellulosic biobutanol using agricultural wastes and residue. Specific necessary pretreatments, fermentation strategies, bioreactor designing and kinetics, and modeling can also enhance the efficient production of biobutanol. The recent genetic engineering approaches of gene knock in, knock out, and overexpression to manipulate pathways can increase the production of biobutanol in a user friendly host organism. So far various genetic manipulation techniques like antisense RNA, TargeTron Technology and CRISPR have been used to target Clostridium acetobutylicum for biobutanol production. This review summarizes the recent research and development for the efficient production of biobutanol in various aspects.


Assuntos
Clostridium acetobutylicum , 1-Butanol/metabolismo , Acetona/metabolismo , Anaerobiose , Biocombustíveis , Biomassa , Butanóis/metabolismo , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Etanol/metabolismo , Fermentação , Gasolina , Octanos/metabolismo , RNA Antissenso/metabolismo
7.
Front Plant Sci ; 13: 950944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845639

RESUMO

The intensive use of chemical fertilizers in arable farming dramatically increased environmental pollution through anthropogenic ammonia (NH3) and greenhouse gaseous emissions. Therefore, there is a need to develop improved fertilizer management practices that can reduce these losses. An experiment was conducted to assess the mitigating effects of sole or combined application of zeolite with biochar on gaseous emissions from arable land. For this purpose, zeolite (clinoptilolite) was mixed with different doses of biochar (produced from Dalbergia Sissoo wood chips) and applied along with the recommended dose of chemical fertilizer (NPK @ 150, 100, and 60 kg ha-1, respectively) on arable land in years 2013-14 and 2014-15. Immediately after application, these were incorporated into the top 10 cm of the soil layer and wheat was sown. Treatments were as follows: C = control, Z = zeolite @ 5 t ha-1, B1Z = biochar @ 3 t ha-1 + zeolite @ 5 t ha-1, B2Z = biochar @ 6 t ha-1 + zeolite @ 5 t ha-1, and B3Z = biochar @ 9 t ha-1 + zeolite @ 5 t ha-1. The experiment was laid out in a randomized complete block design (RCBD) with three replicates. The experimental plot size was 6 m × 4 m. Randomly, ten soil samples from each plot were taken at a depth of 0-15 cm and mixed to get a composite sample. All the samples were immediately stored in a freezer at -18°C until gaseous analysis in order to prevent N transformations. Each soil sample was analyzed for emission of NH3, CO2, and CH4 by using a selected-ion flow-tube mass spectrometer (SIFT-MS). Co-application of zeolite and biochar reduced NH3 and CH4 emissions by an average of 87 and 58% compared to the control, respectively. However, CO2 emission was increased by 104% relative to the control. The NH3 emission was decreased by an average of 61, 78, 90, and 92% by Z, B1Z, B2Z, and B3Z treatments compared to the control. Similarly, the decrement in CH4 emission was 47, 54, 55, and 65%. In contrast, the increment in CO2 emission was 42, 110, and 160% for B1Z, B2Z, and B3Z, respectively, while interestingly, a reduction of 12% was observed in Z treatment. Besides, co-application of zeolite and biochar at the highest dose (B3Z) improved soil chemical properties such as soil EC, OM, total N, as well as available P and K relative to zeolite alone. It is concluded that the combined application of zeolite and biochar can mitigate NH3 and greenhouse emissions and improve soil chemical characteristics, thus enhancing the environmental worth of arable farming.

8.
BMC Infect Dis ; 22(1): 481, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35596145

RESUMO

BACKGROUND: The population-based serosurveys are essential for estimating Coronavirus Disease-19 (COVID-19) burden and monitoring the progression of this pandemic. We aimed to assess the seroprevalence of SARS-CoV-2 antibodies and potential predictors of seropositivity in the Pakistani population. METHODOLOGY: This population-based seroprevalence study includes consenting subjects from the workplaces (factories, corporates, restaurants, media houses, schools, banks, and hospitals) located in the urban areas of Karachi, Lahore, Multan, Peshawar, and Quetta. We analyzed each subject's serum sample for SARS-CoV-2-IgM and/or IgG antibodies using UNIPER IgG/IgM Rapid COVID-19 Testing Kit. The subject's demographics, exposure history, and symptoms experienced (in last 7 days) were also obtained. The collected data was analyzed using SPSS version 22.0. RESULTS: The overall seroprevalence of SARS-CoV-2 antibodies was 16.0% (2810/17,764). The total antibody seropositivity was higher in males than females (OR 1.22, 95% CI 1.110-1.340). The symptomatic subjects had 2.18 times higher odds of IgG seropositivity while 1.2 times for IgM seropositivity than the asymptomatic subjects. The multivariable logistic regression model showed that the odds of SARS-CoV-2 total antibody seroprevalence were affected by the number of dependents (OR = 1.077; 95% CI 1.054-1.099), apparent symptomology (OR = 1.288; 95% CI 1.011-1.643), close unprotected contact with a confirmed or probable case of COVID-19 (OR 2.470; 95% CI 2.164-2.819), traveling history (last 14 days) (OR = 1.537; 95% CI 1.234-1.914) and proximity with someone who traveled (OR = 1.534; 95% CI 1.241-1.896). CONCLUSION: We found a reasonable seroprevalence of SARS-CoV-2 antibodies in the studied population. Several factors like the number of dependents, apparent symptoms, close unprotected contact with a confirmed or probable case of COVID-19, traveling history, and proximity with someone who traveled are associated with increased odds of SARS-CoV-2 antibody seropositivity.


Assuntos
COVID-19 , Anticorpos Antivirais , COVID-19/epidemiologia , Teste para COVID-19 , Feminino , Pessoal de Saúde , Humanos , Imunoglobulina G , Imunoglobulina M , Masculino , SARS-CoV-2 , Estudos Soroepidemiológicos
9.
Metab Eng ; 29: 56-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25732624

RESUMO

Conversion of carbohydrates to lipids at high yield and productivity is essential for cost-effective production of renewable biodiesel. Although some microorganisms can convert sugars to oils, conversion yields and rates are typically low due primarily to allosteric inhibition of the lipid biosynthetic pathway by saturated fatty acids. By reverse engineering the mammalian cellular obese phenotypes, we identified the delta-9 stearoyl-CoA desaturase (SCD) as a rate limiting step and target for the metabolic engineering of the lipid synthesis pathway in Yarrowia lipolytica. Simultaneous overexpression of SCD, Acetyl-CoA carboxylase (ACC1), and Diacylglyceride acyl-transferase (DGA1) in Y. lipolytica yielded an engineered strain exhibiting highly desirable phenotypes of fast cell growth and lipid overproduction including high carbon to lipid conversion yield (84.7% of theoretical maximal yield), high lipid titers (~55g/L), enhanced tolerance to glucose and cellulose-derived sugars. Moreover, the engineered strain featured a three-fold growth advantage over the wild type strain. As a result, a maximal lipid productivity of ~1g/L/h is obtained during the stationary phase. Furthermore, we showed that the engineered yeast required cytoskeleton remodeling in eliciting the obesity phenotype. Altogether, our work describes the development of a microbial catalyst with the highest reported lipid yield, titer and productivity to date. This is an important step towards the development of an efficient and cost-effective process for biodiesel production from renewable resources.


Assuntos
Lipídeos , Engenharia Metabólica , Yarrowia , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lipídeos/biossíntese , Lipídeos/genética , Estearoil-CoA Dessaturase , Yarrowia/genética , Yarrowia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...