Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 358: 142226, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704039

RESUMO

Cellulosic substrates, including wood and thatch, have become icons for sustainable architecture and construction, however, they suffer from high flammability because of their inherent cellulosic composition. Current control measures for such hazards include applying intumescent fire-retardant (IFR) coatings that swell and form a char layer upon ignition, protecting the underlying substrate from burning. Typically, conventional IFR coatings are opaque and are made of halogenated compounds that release toxic fumes when ignited, compromising the roofing's aesthetic value and sustainability. In this work, phytic acid, a naturally occurring phosphorus source extracted from rice bran, was used to synthesize phytic acid-based fire-retardants (PFR) via esterification under reflux, along with powdered chicken eggshells (CES) as calcium carbonate (CaCO3) bio-filler. These components were incorporated into melamine formaldehyde resin to produce the transparent IFR coating. It was revealed that the developed IFR coatings achieved the highest fire protection rating based on UL94 flammability standards compared to the control. The coatings also yielded increased LOI values, indicative of self-extinguishing properties. A 17 °C elevation of the IFR coating's melting temperature and a significant ∼172% increase in enthalpy change from the control were observed, indicating enhanced fire-retardancy. The thermal stability of the coatings was improved, denoted by reduced mass losses, and increased residual masses after thermal degradation. As validated by microscopy and spectroscopy, the abundance of phosphorus and carbon groups in the coatings' condensed phase after combustion indicates enhanced char formation. In the gas phase, TG-FTIR showed the evolution of non-flammable CO2, and fire-retardant PO and P-O-C. Mechanical property testing confirmed no reduction in the adhesion strength of the IFR coating. With these results, the developed IFR coating exhibited enhanced fire-retardancy whilst remaining optically transparent, suggestive of a dual-phase IFR protective mechanism involving the release of gaseous combustion diluents and the formation of a thermally insulating char layer.


Assuntos
Casca de Ovo , Retardadores de Chama , Ácido Fítico , Casca de Ovo/química , Ácido Fítico/química , Animais , Incêndios , Celulose/química , Carbonato de Cálcio/química , Galinhas
2.
ACS Omega ; 9(4): 4497-4512, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38313545

RESUMO

Coconut oil, a low-molecular-weight vegetable oil, is virtually unutilized as a polyol material for flexible polyurethane foam (FPUF) production due to the high-molecular-weight polyol requirement of FPUFs. The saturated chemistry of coconut oil also limits its compatibility with widely used polyol-forming processes, which mostly rely on the unsaturation of vegetable oil for functionalization. Existing studies have only exploited this resource in producing low-molecular-weight polyols for rigid foam synthesis. In this present work, high-molecular-weight polyester polyols were synthesized from coconut monoglycerides (CMG), a coproduct of fatty acid production from coconut oil, via polycondensation at different mass ratios of CMG with 1:5 glycerol:phthalic anhydride. Characterization of the CMG-based polyol (CMGPOL) products showed number-average molecular weights between 1997 and 4275 g/mol, OH numbers between 77 and 142 mg KOH/g, average functionality between 4.8 and 5.8, acid numbers between 4.49 and 23.56 mg KOH/g, and viscosities between 1.27 and 89.57 Pa·s. The polyols were used to synthesize the CMGPOL-modified PU foams (CPFs) at 20 wt % loading. The modification of the foam formulation increased the monodentate and bidentate urea groups, shown using Fourier transform infrared (FTIR) spectroscopy, that promoted microphase separation in the foam matrix, confirmed using atomic force microscopy (AFM) and differential scanning calorimetry (DSC). The implications of the structural change to foam morphology and open cell content were investigated using a scanning electron microscope (SEM) and gas pycnometer. The density of the CPFs decreased, while a significant improvement in their tensile and compressive properties was observed. Also, the CPFs exhibited different resiliency with a correlation to microphase separation. These findings offer a new sustainable polyol raw material that can be used to modify petroleum-based foam and produce flexible foams with varying properties that can be tailored to meet specific requirements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...