Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(21): 210401, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38072615

RESUMO

A central task in finite-time thermodynamics is to minimize the excess or dissipated work W_{diss} when manipulating the state of a system immersed in a thermal bath. We consider this task for an N-body system whose constituents are identical and uncorrelated at the beginning and end of the process. In the regime of slow but finite-time processes, we show that W_{diss} can be dramatically reduced by considering collective protocols in which interactions are suitably created along the protocol. This can even lead to a sublinear growth of W_{diss} with N: W_{diss}∝N^{x} with x<1; to be contrasted to the expected W_{diss}∝N satisfied in any noninteracting protocol. We derive the fundamental limits to such collective advantages and show that x=0 is in principle possible; however, it requires long-range interactions. We explore collective processes with spin models featuring two-body interactions and achieve noticeable gains under realistic levels of control in simple interaction architectures. As an application of these results, we focus on the erasure of information in finite time and prove a faster convergence to Landauer's bound.

2.
Phys Rev Lett ; 126(19): 190502, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34047616

RESUMO

We study the detection of continuous-variable entanglement, for which most of the existing methods designed so far require a full specification of the devices, and we present protocols for entanglement detection in a scenario where the measurement devices are completely uncharacterized. We first generalize, to the continuous variable regime, the seminal results by Buscemi [Phys. Rev. Lett. 108, 200401 (2012)PRLTAO0031-900710.1103/PhysRevLett.108.200401] and Branciard et al. [Phys. Rev. Lett. 110, 060405 (2013)PRLTAO0031-900710.1103/PhysRevLett.110.060405], showing that all entangled states can be detected in this scenario. Most importantly, we then describe a practical protocol that allows for the measurement-device-independent certification of entanglement of all two-mode entangled Gaussian states. This protocol is feasible with current technology as it makes use only of standard optical setups such as coherent states and homodyne measurements.

3.
Entropy (Basel) ; 22(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-33286845

RESUMO

Differential geometry offers a powerful framework for optimising and characterising finite-time thermodynamic processes, both classical and quantum. Here, we start by a pedagogical introduction to the notion of thermodynamic length. We review and connect different frameworks where it emerges in the quantum regime: adiabatically driven closed systems, time-dependent Lindblad master equations, and discrete processes. A geometric lower bound on entropy production in finite-time is then presented, which represents a quantum generalisation of the original classical bound. Following this, we review and develop some general principles for the optimisation of thermodynamic processes in the linear-response regime. These include constant speed of control variation according to the thermodynamic metric, absence of quantum coherence, and optimality of small cycles around the point of maximal ratio between heat capacity and relaxation time for Carnot engines.

4.
Phys Rev Lett ; 124(11): 110606, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242675

RESUMO

We consider the optimization of a finite-time Carnot engine characterized by small dissipations. We bound the power with a simple inequality and show that the optimal strategy is to perform small cycles around a given working point, which can be, thus, chosen optimally. Remarkably, this optimal point is independent of the figure of merit combining power and efficiency that is being maximized. Furthermore, for a general class of dissipative dynamics the maximal power output becomes proportional to the heat capacity of the working substance. Since the heat capacity can scale supraextensively with the number of constituents of the engine, this enables us to design optimal many-body Carnot engines reaching maximum efficiency at finite power per constituent in the thermodynamic limit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...