Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1184343, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808317

RESUMO

Controlling early blight of tomatoes using endophytic bacteria is an eco-friendly and sustainable approach to manage this common fungal disease caused by Alternaria solani, Alternaria alternata, and Curvularia lunata. Endophytic bacteria are microorganisms that live inside plant tissues without causing harm and can help protect the host plant from pathogens. In this work, twenty endophytic bacterial isolates from tomato healthy plants were tested against pathogenic fungal isolates that caused early blight disease in vitro. Out of the 20 tested isolates, three (B4, B7, and B17) were considered effective isolates against the growth of fungal pathogens. The three isolates were recognized as Enterobacter cloacae HS-6 (B4), Pseudomonas gessardii HS-5 (B 7), and Pseudomonas mediterranea HS-4 (B17) using 16s-rDNA sequencing. Different concentrations of bacterial cultural diltrates at 20, 40, and 60% were tested for their antagonistic effects on the development of pathogenic fungi in vitro. The lowest dry weights of pathogenic isolates in all bacterial culture filtrates were discovered at 60%. In all culture filtrates, phenolic compounds showed the largest peak area. Under greenhouse conditions, the least disease severity of tomato early blight was found for E. cloacae and its culture filtrate compared to other treatments. Real-time PCR was used to examine the expression pattern of the defense response gene ß-1.3 glucanase gene in infected tomato plants with pathogenic fungi (control) as well as its relations with efficient biocontrol agent (E. cloacae). The expression of the gene increased substantially and significantly after three days from the inoculation-infected plants with C. lunata and E. cloacae while it reached the maximum after five days from the inoculation with A. alternata, A. solani and E. cloacae. Our study concluded that the endophytic bacterial isolate E. cloacae can be considered a promising biocontrol agent for preventing tomato early blight.

2.
Front Plant Sci ; 14: 1192818, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37528983

RESUMO

Introduction: Alternaria solani is a challenging pathogen in the tomato crop globally. Chemical control is a rapid approach, but emerging fungicide resistance has become a severe threat. The present study investigates the use of culture filtrates (CFs) of three species of Trichoderma spp. to control this disease. Methods: Highly virulent A. solani strain and three Trichoderma fungal strains viz., T. harzianum (Accession No: MW590687), T. atroviride (Accession No: MW590689) and T. longibrachiatum (Accession No: MW590688) previously isolated by authors were used in this study. The efficacy of culture filtrates (CFs) to mitigate early blight disease were tested under greenhouse and field conditions, experiments were conducted in different seasons of 2020 using a tomato variety "doucen". Results and discussion: The CFs of T. harzianum, T. longibrachiatum, and T. atroviride significantly inhibited the in vitro mycelial growth of A. solani (62.5%, 48.73%, and 57.82%, respectively, followed by control 100%). In the GC-MS analysis of Trichoderma CF volatile compounds viz., harzianic acid (61.86%) in T. harzianum, linoleic acid (70.02%) in T. atroviride, and hydroxymethylfurfural (68.08%) in the CFs of T. longibrachiatum, were abundantly present. Foliar application of CFs in the greenhouse considerably reduced the disease severity (%) in all treatments, viz., T. harzianum (18.03%), T. longibrachiatum (31.91%), and T. atroviride (23.33%), followed by infected control (86.91%), and positively affected the plant biomarkers. In the greenhouse, the plants treated with CFs demonstrated higher flavonoids after 6 days of inoculation, whereas phenolic compounds increased after 2 days. The CF-treated plants demonstrated higher antioxidant enzymes, i.e., phenylalanine ammonia-lyase (PAL) and peroxidase (POD), after 4 days, whereas polyphenol oxidase (PPO) was higher after 6 days of inoculation, followed by healthy and infected controls. In open field conditions, disease severity in CF-treated plants was reduced in both seasons as compared to naturally infected plants, whereas CF-treated plants exhibited a higher fruit yield than controls. The present results conclude that CFs can be a potential biocontrol candidate and a promising alternative to the early blight pathogen for sustainable production.

3.
Polymers (Basel) ; 15(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37376306

RESUMO

Passivated-carbon quantum dots (P-CQDs) have been attracting great interest as an antimicrobial therapy tool due to their bright fluorescence, lack of toxicity, eco-friendly nature, simple synthetic schemes, and possession of photocatalytic functions comparable to those present in traditional nanometric semiconductors. Besides synthetic precursors, CQDs can be synthesized from a plethora of natural resources including microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC). Converting MCC into NCC is performed chemically via the top-down route, while synthesizing CODs from NCC can be performed via the bottom-up route. Due to the good surface charge status with the NCC precursor, we focused in this review on synthesizing CQDs from nanocelluloses (MCC and NCC) since they could become a potential source for fabricating carbon quantum dots that are affected by pyrolysis temperature. There are several P-CQDs synthesized with a wide spectrum of featured properties, namely functionalized carbon quantum dots (F-CQDs) and passivated carbon quantum dots (P-CQDs). There are two different important P-CQDs, namely 2,2'-ethylenedioxy-bis-ethylamine (EDA-CQDs) and 3-ethoxypropylamine (EPA-CQDs), that have achieved desirable results in the antiviral therapy field. Since NoV is the most common dangerous cause of nonbacterial, acute gastroenteritis outbreaks worldwide, this review deals with NoV in detail. The surficial charge status (SCS) of the P-CQDs plays an important role in their interactions with NoVs. The EDA-CQDs were found to be more effective than EPA-CQDs in inhibiting the NoV binding. This difference may be attributed to their SCS as well as the virus surface. EDA-CQDs with surficial terminal amino (-NH2) groups are positively charged at physiological pH (-NH3+), whereas EPA-CQDs with surficial terminal methyl groups (-CH3) are not charged. Since the NoV particles are negatively charged, they are attracted to the positively charged EDA-CQDs, resulting in enhancing the P-CQDs concentration around the virus particles. The carbon nanotubes (CNTs) were found to be comparable to the P-CQDs in the non-specific binding with NoV capsid proteins, through complementary charges, π-π stacking, and/or hydrophobic interactions.

4.
Curr Res Food Sci ; 6: 100483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033735

RESUMO

Quinoa is one of the highest nutritious grains, and global consumption of quinoa flour has increased as people pay more attention to health. Due to its high value, quinoa flour is susceptible to adulteration. Cross-contamination between quinoa flour and other flour can be easily neglected due to their highly similar appearance. Therefore, detecting adulteration in quinoa flour is important to consumers, industries, and regulatory agencies. In this study, portable hyperspectral imaging in the visible near-infrared (VNIR) spectral range (400-1000 nm) was applied as a rapid tool to detect adulteration in quinoa flour. Quinoa flour was adulterated with wheat, rice, soybean, and corn in the range of 0-98% with 2% increments. Partial least squares regression (PLSR) models were developed, and the best model for detecting the % authentic flour (quinoa) was obtained by the raw spectral data with R2p of 0.99, RMSEP of 3.08%, RPD of 8.77, and RER of 25.32. The model was improved, by selecting only 13 wavelengths using bootstrapping soft shrinkage (BOSS), to R2p of 0.99, RMSEP of 2.93%, RPD of 9.18, and RER of 26.60. A visualization map was also generated to predict the level of quinoa in the adulterated samples. The results of this study demonstrate the ability of VNIR hyperspectral imaging for adulteration detection in quinoa flour as an alternative to the complicated traditional method.

6.
Mol Biol Rep ; 50(6): 4917-4930, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37076705

RESUMO

BACKGROUND: The bacterial speck disease of tomato caused by a bacterial pathogen Pseudomonas syringae pv. tomato is a most important disease causing severe crop losses. METHODS AND RESULTS: Present study was conducted to investigate and characterize the population diversity of P. syringae pv. tomato pathogen isolated from infected tomato plants from various regions of Egypt. Significant variation among the isolates was observed which demonstrated considerable virulence. All isolates were pathogenic and the CFU population recovered from inoculate tomato leaves by isolate Pst-2 was higher than other isolates. Genetic disparity among the isolates was investigated by PCR analysis by amplifying hrpZ gene using random amplified polymorphic DNA (RAPD), sequence-related amplified polymorphism (SRAP), and inter-simple sequence repeats (ISSR) markers. The amplified products for ITS1 were found to have 810 bp length whereas 536 bp length was observed for hrpZ gene using primer pairs (1406-f/23S-r) and (MM5-F, MM5-R) respectively. The restriction analysis of amplified regions "ITS" and hrpZ by using 5 and 4 endonucleases respectively demonstrated slight variation among the bacterial isolates. The results of RAPD, ISSR and SRAP showed higher polymorphism (60.52%) within the isolates which may assist for successful characterization by unique and specific markers based on geographical distribution, origin and virulence intensity. CONCLUSION: The results of present study suggested that the use of molecular approach may provide successful and valuable information to differentiate and classify P. syringae pv. tomato strains in future for the detection and confirmation of pathogenicity.


Assuntos
Infecções Bacterianas , Solanum lycopersicum , Pseudomonas syringae/genética , Virulência/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Plantas/genética , Doenças das Plantas/microbiologia
7.
Plants (Basel) ; 11(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36235487

RESUMO

The therapeutic importance of Balanites aegyptiaca in folk medicine for the treatment of several common human diseases has led researchers to conduct phytochemical and pharmacological studies on extracts from various parts of the plant. In the current study, the phytochemical composition of the B. aegyptiaca methanolic fruit extract was characterized, and its antimicrobial activity was evaluated together with the cytotoxic activity against MCF-7, PC-3, and Caco-2, compared with normal Vero cells. Further, its effects on cell cycle arrest, apoptosis induction and expression of apoptosis-related genes were assessed. The phytochemical screening revealed the presence of fatty acids and their esters in addition to phytosterols, steroid derivatives, and bioflavonoid glycosides with oleic and palmitic acids being the prevalent components (24.12 and 21.56%, respectively). The results showed considerable cytotoxic activity of the extract against the three cancer cell lines (MCF-7, PC-3, and Caco-2) with a selectivity index ranging from 5.07 to 6.52. This effect was further confirmed with the accompanied increased total apoptosis of treated PC-3 cells (19.22% of the total number of cells) compared to the control cells (0.64% of the total number of cells) with cell cycle arrest at G1 phase and the increased transcription of pro-apoptotic genes including P53 (3.69) and BAX (3.33) expressed as fold change (2^ ΔΔCT). The calculated minimum inhibitory concentration (MIC) was similar (62.5 µg/mL) against the three tested bacterial strains (Acinetobacter johnsonii, Serratia marcescens and Agrobacterium tumefaciens), while it was higher than 1000 µg/mL for the fungal species (Rhizoctonia solani, Penicillium italicum, and Fusarium oxysporium). Our findings suggest a promising anticancer activity for B. aegyptiaca, which paves the way for more detailed future studies.

8.
Plants (Basel) ; 11(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015443

RESUMO

Despite the proven biological activity of the aerial part extract of Alchemilla vulgaris, scarce information is available about the activity of the root extract. This encouraged us to initiate the current investigation to study the cytotoxic activity of A. vulgaris methanolic root extract against various cancer cell lines in vitro, along with its antimicrobial activity and phytochemical screening. MTT assay was applied to test the cytotoxic effect against the prostate (PC-3), breast (MCF-7) and colorectal adenocarcinoma (Caco-2), together with normal Vero cells. Flow cytometry was employed to assess cell cycle arrest and apoptosis vs. necrosis in PC-3 cells. The expression of apoptosis-related genes (BAX, BCL2 and P53) was quantified by qRT-PCR analysis. The obtained results showed strong antiproliferative activity on the three cancer cell lines and the normal Vero cells in a dose-dependent manner. A high selectivity index (SI) was recorded against the three cell lines with PC-3 cells showing the highest SI and the lowest IC50. This effect was associated with cell cycle arrest at G1 phase and induction of total apoptosis at 27.18% being mainly early apoptosis. Apoptosis induction was related to the upregulation of the proapoptotic genes P53 and BAX and the downregulation of the antiapoptotic gene BCL2. Additionally, the extract demonstrated in vitro antibacterial activity against Agrobacterium tumefaciens, Serratia marcescens and Acinetobacter johnsoni. Additionally, it showed antifungal activity against Rhizoctonia solani, Penicillium italicum and Fusarium oxysporium. Seven phenolic acids and seven flavonoids were detected. The predominant phenolic acids were cinnamic and caffeic acids, while hisperdin and querestin were the principal flavonoids. These findings provide clear evidence about the promising proapoptotic effect of A. vulgaris root extract, which contributes to laying the basis for broader and in-depth future investigations.

9.
Plants (Basel) ; 11(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35956468

RESUMO

Effective alternative strategies and methodological approaches are critically necessary for cancer prevention and therapy. In this study, we investigated the antitumor potential of neem fruit mesocarp and epicarp extracts. The chemical composition of the derived extracts was characterized using GC-MS. Data were collected on the antimicrobial activity of the extracts in addition to the cytotoxicity effect evaluated against PC-3, MCF-7, and Caco-2 cancer cell lines, compared with the normal Vero cells. Cell-cycle arrest, apoptosis, and expression of apoptosis-related genes were assessed on PC-3 cells. Both extracts had significant antiproliferative effects on all tested cell lines in a dose-dependent manner, with the mesocarp extract being more potent. Both extracts also showed high antibacterial and antifungal activities. These results were related to the chemical constituents of the extracts identified by the GC-MS analysis. The extract of neem fruit mesocarp caused cell-cycle arrest at G2/M phase of PC-3 cells. The cytotoxicity of neem mesocarp extract is strongly correlated with the induction of apoptosis, where it caused downregulation of the antiapoptotic BCL2 gene but upregulation of the proapoptotic P53 and BAX genes. This study showed that neem fruit extract is potential anticancer material in the future.

10.
Genes (Basel) ; 13(6)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35741837

RESUMO

Loose smut (LS) disease is a serious problem that affects barley yield. Breeding of resistant cultivars and identifying new genes controlling LS has received very little attention. Therefore, it is important to understand the genetic basis of LS control in order to genetically improve LS resistance. To address this challenge, a set of 57 highly diverse barley genotypes were inoculated with Egyptian loose smut race(s) and the infected seeds/plants were evaluated in two growing seasons. Loose smut resistance (%) was scored on each genotype. High genetic variation was found among all tested genotypes indicating considerable differences in LS resistance that can be used for breeding. The broad-sense heritability (H2) of LS (0.95) was found. Moreover, genotyping-by-sequencing (GBS) was performed on all genotypes and generated in 16,966 SNP markers which were used for genetic association analysis using single-marker analysis. The analysis identified 27 significant SNPs distributed across all seven chromosomes that were associated with LS resistance. One SNP (S6_17854595) was located within the HORVU6Hr1G010050 gene model that encodes a protein kinase domain-containing protein (similar to the Un8 LS resistance gene, which contains two kinase domains). A TaqMan marker (0751D06 F6/R6) for the Un8 gene was tested in the diverse collection. The results indicated that none of the Egyptian genotypes had the Un8 gene. The result of this study provided new information on the genetic control of LS resistance. Moreover, good resistance genotypes were identified and can be used for breeding cultivars with improved resistance to Egyptian LS.


Assuntos
Hordeum , Biomarcadores , Egito , Hordeum/genética , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único , Estações do Ano
11.
Plants (Basel) ; 11(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35631726

RESUMO

Shrimp waste is rich in organic compounds and essential plant nutrients, e.g., calcium (Ca), and converting these wastes to organic fertilizer is important for environmental preservation and to achieve sustainable agricultural management. In the current study, Ca-rich biochar was prepared from shrimp wastes (SWB) by pyrolysis at 300 °C. We hypothesized that the Ca-rich biochar will help in solving the problem of plant growth in saline soil by reducing sodium (Na) uptake and mitigating oxidative stress. The current study aimed to investigate the effect of SWB on the quality of saline sandy soil and the mechanism of salt resistance in pearl millet (Pennisetum glaucum L.). Pearl millet plants were planted in saline sandy soil (10 dS m-1) in wooden boxes (1.3 × 0.8 m size and 0.4 m height), and 5 doses (0, 1.0, 1.5, 2.0, and 2.5% (w/w)) of SWB were added. SWB application increased the soil quality and nutrient uptake by pearl millet plants. The highest rate of SWB increased the soil microbial biomass carbon and the activity of dehydrogenase enzyme by 43 and 47% compared to the control soil. SWB application reduced the uptake of sodium (Na+) and chloride (Cl-) and increased the K/Na ratio in the leaf tissues. SWB addition significantly increased the activity of antioxidant enzymes, e.g., ascorbate peroxidase (APX), polyphenol oxidase (PPO), and pyrogallol peroxidases (PPX). The application of 2.5% SWB to the saline soil increased the soluble carbohydrates and proline in plant leaves by 75 and 60%, respectively, and reduced the malondialdehyde (MDA) by 32% compared to the control. SWB enhanced the antioxidant defense and mitigated oxidative stress by improving the synthesis of osmoprotectants, e.g., soluble carbohydrates and proline. Sandy saline soils in arid and semiarid areas suffer greatly from low organic matter contents, which reduces the soil quality and increases the risk of salt during plant growth. The high organic matter and calcium content (30%) in the shrimp waste-derived biochar improved the quality of the saline sandy soil, reduced the uptake of toxic salts, and increased the quality of the forage material. The addition of recycled shrimp waste to saline low-fertility soils improves soil productivity and is safe for soil health.

12.
J Fungi (Basel) ; 7(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575783

RESUMO

This study aimed to evaluate the efficacy of endophytic bacterium to control common bean rust disease under greenhouse conditions. Endophytic bacterium Pseudomonas putida ASU15 was isolated from fresh asymptomatic common bean, identified using biochemical and molecular characteristics. In vitro, the inhibitory effect of different concentrations of P. putida (1 × 104, 1 × 105 and 1 × 106), as well as fungicide ortiva (0.01%) on uredospores germination of Uromyces appendiculatus were tested using water agar medium. The concentration showing the highest reduction of uredospores germination was at 1 × 106, while there was complete inhibition of uredospores germination associated with using ortiva. Scanning electron microscope exhibited the ability of P. putida cells to attack the cell wall of the fungal uredospores germ tubes of U. appendiculatus, causing obvious cell wall breakdown. The activities of chitinase, lipase, and protease produced by P. putida ASU15, in vitro, were evaluated spectrophotometrically. Chitinolytic, proteolytic, and lipolytic activities were exhibited, contributing 55.26, 3.87, and 26.12 U/mL, respectively. Under greenhouse conditions, treated plants with P. putida ASU15 (two days before pathogen inoculation or at the same time of pathogen inoculation) or fungicide reduced the disease severity, compared to the control. Applying P. putida ASU15 at the same time of pathogen inoculation showed reduction in disease severity (69.9%), higher than application before pathogen inoculation (54.9%). This study is considered the first report that demonstrates the mycoparasitic strategy of P. putida for controlling U. appendiculatus. In conclusion, our results revealed that P. putida ASU15 affords a significant disease reduction that may be attributed to direct suppression of pathogen spores germination.

13.
J Fungi (Basel) ; 6(3)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962077

RESUMO

To obtain a clear understanding of the mode of action of potassium bicarbonate (PB), sodium silicate (SSi) and calcium chelate (CCh) solutions (1%) in inducing resistance to gray mold disease in table grapes, enzymatic and nonenzymatic investigations were carried out. In particular, changes in the activity of the enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD), total phenolic content and total flavonoid content were studied. As indirect action, PB, SSi and CCh reduced the incidence of gray mold by 43%, 50% and 41%, respectively. The highest activity of SOD was detected at 48 h in SSi-treated tissue, PB-treated tissue and CCh-treated tissue, and it was 1.7-, 1.4- and 1.2-fold higher, respectively, compared to the control. The APX activity was significantly higher in SSi-treated tissue than in the control at 24, 48 and 72 h and showed an increase in activity 2-fold for all times. Additionally, PB, SSi and CCh increased the activity of POD by 1.4-, 1.2- and 2.7-fold at 48 h posttreatment, respectively. The results showed that CCh was the most pronounced salt to increase both total phenol and flavonoid contents by 1.3 and 2.1, respectively. Additionally, the three tested salts induced an increase in total phenols and total flavonoids at 48 h posttreatment. The obtained result is one more movement towards an overall understanding of the mechanism by which salt solutions act as antimicrobial agents against gray mold of table grapes.

14.
Open Life Sci ; 15: 185-197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33987475

RESUMO

Cellulosic date palm wastes may have beneficial biotechnological applications for eco-friendly utilization. This study reports the isolation of thermophilic cellulase-producing bacteria and their application in lactic acid production using date palm leaves. The promising isolate was identified as Paenibacillus alvei by 16S rRNA gene sequencing. Maximum cellulase production was acquired using alkaline treated date palm leaves (ATDPL) at 48 h and yielded 4.50 U.mL-1 FPase, 8.11 U.mL-1 CMCase, and 2.74 U.mL-1 ß-glucosidase. The cellulase activity was optimal at pH 5.0 and 50°C with good stability at a wide temperature (40-70°C) and pH (4.0-7.0) range, demonstrating its suitability in simultaneous saccharification and fermentation. Lactic acid fermentation was optimized at 4 days, pH 5.0, 50°C, 6.0% cellulose of ATDPL, 30 FPU/ g cellulose, 1.0 g. L-1 Tween 80, and 5.0 g. L-l yeast extract using Lactobacillus delbrueckii. The conversion efficiency of lactic acid from the cellulose of ATDPL was 98.71%, and the lactic acid productivity was 0.719 g. L-1 h-1. Alkaline treatment exhibited a valuable effect on the production of cellulases and lactic acid by reducing the lignin content and cellulose crystallinity. The results of this study offer a credible procedure for using date palm leaves for microbial industrial applications.

16.
Microbiol Res ; 212-213: 1-9, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29853163

RESUMO

This study aimed to investigate the mycoparasitism of Botrytis cinerea, the pathogen of scape and umbel blights of onion seed crops, by endophytic Talaromyces pinophilus. The dual culture test showed that the antagonistic potentiality of T. pinophilus against B. cinerea depend on the mycoparasitism that was morphologically detected by the formation of mycelial overgrowth. Moreover, the light micrograph of the mycelia at the contact zone exhibited that the hyphae of T. pinophilus penetrated and grew intracellularly inside the hyphae of B. cinerea. A more illustrative figure of the establishment of coiled hyphae as well as the conformation of the penetration process was assayed by SEM and TEM analyses. SEM micrograph revealed that the hyphae of T. pinophilus grew along hyphae of B. cinerea, attached, coiled around the host hypha and generated pseudoappressorium. A clear disintegration of cell wall of the host hypha was observed at the penetration site. The micrographs of TEM exhibited the ability of T. pinophilus to produce pseudoappressorium, penetrate and then entere a hypha of B. cinerea causing distinct cytoplasmic disorganization. High activities of cell wall degrading enzymes (chitinase, lipase and protease) involved in the mycoparasitism were evaluated by the endophytic T. pinophilus. In conclusion, this study demonstrated that the endophytic T. pinophilus may be a promising biocontrol agent against phytopathogenic fungi instead of chemical fungicides.


Assuntos
Antibiose , Botrytis/patogenicidade , Cebolas/microbiologia , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Talaromyces/fisiologia , Botrytis/citologia , Botrytis/crescimento & desenvolvimento , Botrytis/isolamento & purificação , Parede Celular , Quitinases/metabolismo , Técnicas de Cocultura , DNA Fúngico , Egito , Endófitos , Fungicidas Industriais , Hifas/citologia , Hifas/crescimento & desenvolvimento , Lipase/metabolismo , Microscopia Eletrônica , Micélio/crescimento & desenvolvimento , Peptídeo Hidrolases/metabolismo , Controle Biológico de Vetores/métodos , Talaromyces/citologia , Talaromyces/enzimologia , Talaromyces/isolamento & purificação
17.
Plant Pathol J ; 30(3): 299-303, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25289016

RESUMO

This study aims to isolate and identify the causal pathogen of tomato bacterial wilt in Egypt. In 2008, tomato plants showing typical symptoms of bacterial wilt disease with no foliar yellowing were observed in Minia, Assiut and Sohag governorates, Egypt. When cut stems of symptomatic plants were submerged in water, whitish ooze was evident and longitudinal sections showed a brown discoloration in the vascular tissues. Bacteria were isolated on triphenyl tetrazolium chloride medium and fifteen isolates shown typical morphological and cultural characteristics were confirmed as Ralstonia solanacearum biovar 2 race 1. Pathogenicity tests showed that all isolates proved to be pathogenic to tomato plants, varied from 52 to 97% wilting. This is the first report of R. solanacearum biovar 2 race 1 causing bacterial wilt in tomato crop in Egypt.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...