Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 11(9)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36139976

RESUMO

Escherichia coli (E.coli) found in retail chicken meat could be causing a wide range of infections in humans and constitute a potential risk. This study aimed to evaluate 60 E. coli isolates from retail chicken meat (n = 34) and human urinary tract infections (UTIs, n = 26) for phylogenetic diversity, presence of pathogenicity island (PAI) markers, antimicrobial susceptibility phenotypes, and antimicrobial resistance genes, and to evaluate their biofilm formation capacity. In that context, confirmed E.coli isolates were subjected to phylogrouping analysis using triplex PCR, antimicrobial susceptibility testing using the Kirby-Bauer disc diffusion method; PAI distribution was investigated by using two multiplex PCRs. Most of the chicken isolates (22/34, 64.7%) were identified as commensal E. coli (A and B1), while 12 isolates (35.3%) were classified as pathogenic virulent E. coli (B2 and D). Similarly, the commensal group dominated in human isolates. Overall, 23 PAIs were detected in the chicken isolates; among them, 39.1% (9/23) were assigned to group B1, 34.8% (8/23) to group A, 4.34% (1/23) to group B2, and 21.7% (5/23) to group D. However, 25 PAIs were identified from the human isolates. PAI IV536 was the most prevalent (55.9%, 69.2%) PAI detected in both sources. In total, 37 (61.7%) isolates of the chicken and human isolates were biofilm producers. Noticeably, 100% of E. coli isolates were resistant to penicillin and rifamycin. Markedly, all E. coli isolates displayed multiple antibiotic resistance (MAR) phenotypes, and the multiple antibiotic resistance index (MARI) among E. coli isolates ranged between 0.5 and 1. Several antibiotic resistance genes (ARGs) were identified by a PCR assay; the sul2 gene was the most prevalent (38/60, 63.3%) from both sources. Interestingly, a significant positive association (r = 0.31) between biofilm production and resistance to quinolones by the qnr gene was found by the correlation analysis. These findings were suggestive of the transmission of PAI markers and antibiotic resistance genes from poultry to humans or humans to humans through the food chain. To avoid the spread of virulent and multidrug-resistant E. coli, intensive surveillance of retail chicken meat markets is required.

2.
Pharmaceutics ; 14(7)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35890215

RESUMO

(1) Background: Virgin olive oil (VOO) has attracted the attention of many researchers due to its nutritional and medicinal values. However, VOO's biological applications have been limited due to a lack of precise chemical profiling and approach to increase the physicochemical characteristics, bioactivity, and delivery of its bioactive components; (2) Methods: The current study intended to evaluate the chemical composition of VOO using the GC-MS technique and determine its major components. Furthermore, the effect of incorporating VOO into Tween 80-lecithin nanoemulsion (OONE) and a quaternized trimethyl chitosan-thiol (TMCT) hydrogel-thickened nanoemulsion system (OOHTN) on its physicochemical characteristics and biological potentials will be investigated; (3) Results: The VOO-based NEs' physicochemical properties (particle size and zeta potential) were steady during storage for four weeks owing to the inclusion of the protective TMCT hydrogel network to OONE. Excessive fine-tuning of olive oil nanoemulsion (OONE) and the TMCT protective network's persistent positive charge have contributed to the oil's improved antimicrobial, anti-biofilm, and antioxidant potentials; (4) Conclusions: The Tween 80-lecithin-TMCT nanosystem might provide a unique and multifunctional nanoplatform for efficient topical therapy as well as the transdermal delivery of lipophilic bioactive compounds.

3.
Saudi J Biol Sci ; 29(4): 2329-2335, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531243

RESUMO

Ovulation failure was associated with a reduction in pre-mating concentrations of oestradiol-17ß and prolactin (PRL). The present study aimed to evaluate whether pre-mating PRL levels have a role in the reproductive efficiency of doe rabbits. A total of 78 multiparous California does (2nd parity) were divided, according to plasma pre-mating PRL, into five categories, >20-25, >25-30, >30-35, >35-40, and >40-45 ng/ml. Does in all categories were naturally mated and kindled, then their reproductive measurements and progesterone (P4) levels were determined. Results show that pre-mating PRL averaged 23.60 ± 0.78, 28.00 ± 0.83, 33.46 ± 0.43, 38.17 ± 0.49 and 41.98 ± 0.68 ng/ml in five categories (p < 0.05), respectively, representing the highest distribution (38.5%) in the 3rd-category. Live body weight of doe rabbits, at mating, pregnancy, and parturition increased (p < 0.05) with increasing pre-mating PRL level. The number of services, litter size, and pregnancy rate increased (p < 0.05) by increasing PRL levels. Reproductive traits and P4 level at mid-pregnancy of does, and the average weight of kits at birth increased (p < 0.05) by increasing PRL levels. The pre-mating PRL profile is important for the identification of reproductive performance in doe rabbits.

4.
Saudi J Biol Sci ; 29(6): 103291, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35521356

RESUMO

The present study aimed to evaluate the impact of feeding peanut meal and linseed meal (LSM) with or without enzyme mixture on growth, plasma metabolites, muscle amino acid (AA) profile, nutrient digestibility, and expression of nutrient absorption-related genes in broilers. A total of 560 one-day-old Cobb-500 male broiler chicks were distributed into eight experimental treatments (7 replications of 10 chicks each) as follows: This study was designed by using 560 one-day-old Cobb-500 male broiler chicks were distributed into eight experimental groups (7 replications of 10 chicks each) to evaluate the differences in body weight, body weight gain, feed intake, feed conversion rate, carcass parts, blood biochemical and mRNA expression genes. Group 1 (C) control fed the basal diet without supplements, Group 2 (C + E) is control group fed on 350 g/ton enzyme mixture, Group 3 (C + PNM100) is control group fed 100 kg/ton peanut meal, Group 4 (C + E + PNM100) is a control group fed on 350 g/ton enzyme mixture and 100 kg/ton peanut meal, Group 5 (C + LSM100) is a control group fed on 100 kg/ton linseed meal, Group 6 (C + E + LSM100) is a control group fed on 350 g/ton enzyme mixture and 100 kg/ton linseed meal, Group 7 (C + PNM50 + LSM50) is control group fed on 50 kg/ton peanut meal and 50 kg/ton linseed meal. Group 8 (C + E + PNM50 + LSM50) is the control group fed on 50 kg/ton peanut meal and 50 kg/ton linseed meal. Each gram of the enzyme mixture contains 11,000 U Xylanase, 6000 U Cellulase, 700 U ß-Mannanase, 1500 U Phytase, 5 mg α-Amylase, and 2 mg Protease. No differences in Bodyweight, Bodyweight gain, Feed intake, and carcass parts were noticed among experimental groups, while abdominal fat (%) and FCR were reduced (P < 0.05) in PNM50 + LSM50 + E and LSM100 groups. Plasma metabolites were not altered except total cholesterol, triglyceride, and LDL, reduced (P < 0.01) in treated birds. Dietary inclusion of 100 kg PNM or LSM reduced (P < 0.05) methionine concentration in muscle, while all remaining AA and ammonia concentrations were unaffected. Hepatic MDA contents were reduced (P < 0.001) in treated groups. Nutrient digestibility was not altered among groups except for protein digestibility, which was elevated (P < 0.05) in PNM50 + LSM50 + E, E, and PNM100 + E groups. The highest mRNA expressions of PepT1, APN, SGLT1, HMGCR, GHr, and IGF-1 genes were noticed in PNM50 + LSM50 + E. Conclusively, PNM and LSM can efficiently substitute corn and soybean meal in broiler diets, particularly when fortified with exogenous enzymes, without negative impacts on broiler performance.

5.
Animals (Basel) ; 11(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34944273

RESUMO

Thirty multiparous lactating Holstein cows with an average live body weight of 642 ± 21 kg and an average daily milk yield of 30.46 ± 0.59 kg were used in this study. Cows with parities of 2 and 4 were used following their peak period, and were divided into three groups, with ten cows in each group. The control group was fed yellow corn grain rations (YCG), while for the 2nd and 3rd groups, 25 and 50% of YCG was replaced with dry sugar beet pulp (DSBP), denoted as DSBP25 and DSBP50, respectively. The contents of dry matter, organic matter, ether extract, nitrogen-free extract, and fiber carbohydrate in the experimental rations tended to decrease; however, crude protein, crude fiber, ash, and fiber fractions tended to increase in the DSBP25 and DSBP50 groups. Only crude fiber digestibility increased (p < 0.05) in the DSBP rations. Rumen pH value and concentration of ammonia nitrogen (NH3-N) decreased, while the concentration of total volatile fatty acids (TVFAs) increased in the DSBP25 and DSBP50 groups. The concentrations of total protein and globulin in blood plasma were higher (p < 0.05) in DSBP25 and DSBP50 than in YCG. However, plasma albumin concentration, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) activities were lower (p < 0.05) in DSBP50 than in YCG. Milk yield and yield of 4% fat-corrected milk (4% FCM) were higher (p < 0.05) in DSBP25 and DSBP50 than in YCG. Fat, protein, solids not fat (SNF), and total solids (TS) contents in milk increased significantly (p < 0.05) for feeding rations containing DSBP. Feed cost was reduced, but the output of milk yield increased with DSBP. In conclusion, introducing DSBP into the rations of Holstein dairy cows led to significant improvements in their productive performance.

6.
Saudi J Biol Sci ; 28(11): 6544-6555, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34764770

RESUMO

This study investigated two kinds of probiotic bacteria (Bacillus toyonensis, B1 and Bifidobacterium bifidum, B2) on laying Japanese quail's performance, egg quality, fertility and hatchability, blood biochemical characteristics and microbiological parameters. A total of 270 mature quails (180 females and 90 males) were distributed into ten groups in a completely randomized design at eight weeks of age. The experimental groups were as follows: T1: basal diet only (control); T2-T5, basal diet plus 0.05, 0.075, 0.10 and 0.125% B1, respectively; T6: basal diet plus 0.10% B2; T7-T10: basal diet plus 0.05, 0.075, 0.10 and 0.125% B1 plus 0.05% B2, respectively. Results revealed that egg number (EN) and egg weight (EW) were gradually increased (P < 0.01) as the levels of both probiotic types increased. The feed conversion ratio (FCR) was significantly (P < 0.05) better within the total experimental period (8-20 weeks) due to B1 alone or/with B2 supplementation. Values of yolk percentage (Y%) were statistically (P < 0.01) higher only at 8-20 weeks of age and T10 recorded the highest value. By increasing the level of probiotics, fertility and hatchability percentages (F% and H%) were gradually increased (P < 0.01 and P < 0.05). Creatinine (CR) level was statistically reduced in birds fed T4 diet. Also, urea-N and aspartate aminotransferase (AST) levels were reduced in treated birds. The opposite was found regarding alkaline phosphatase (ALP). Conclusively, using B1 and B2 enhanced the productive performance, some egg quality traits, fertility and hatchability, digestive enzyme activities, and reduced the harmful bacteria in the gut of laying Japanese quail. Our findings could recommend to apply T4 (basal diet + 0.10 % B1), T6 (basal diet + 0.10% B2) and T9 (basal diet + 0.10% B1 + 0.05% B2) levels for the best results.

7.
Saudi J Biol Sci ; 28(8): 4532-4541, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34354439

RESUMO

This experiment investigated the role of graded dietary levels of two probiotic strains (Bacillus toyonensis; BT and Bifidobacterium bifidum; BB) on the growth rate, carcass traits, physiological and histological aspects of growing Japanese quail. One thousand and three hundred sixty one-day-old un-sexed Japanese quail chicks were distributed randomly into ten groups. The 1st group served as a control and fed the basal diet without supplement while the 2nd, 3rd, 4th and 5th groups received the control diet supplemented with 0.05, 0.075, 0.10 and 0.125% BT, respectively. The 6th group fed the control diet plus 0.10% BB while the remaining groups (7th to 10th) received the basal diet incorporated with the previous levels of BT rich with 0.05% BB. Dietary supplementation of BT and/or BB increased body weight and gain; however, feed intake and feed conversion were not affected. Amylase activity was significantly elevated in 5th, 7th and 9th groups, while lipase activity was improved in all treatment groups except 3rd and 6th groups. Results obtained concluded that dietary supplementation of BT with or without BB is useful for performance, digestive enzyme activities, blood cholesterols, antioxidant status and ileal histomorphometry and microbiota of growing Japanese quail.

8.
Saudi J Biol Sci ; 28(8): 4581-4591, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34354444

RESUMO

This study aimed to prolong the raw buffalo milk handling and cold storage period by controlling the microbes, enhancing sensory properties and their functionality after supplementing bioactive peptides. The additions included hen and duck egg white protein isolates (HPI and DPI), pepper seed protein (PSP), and pepsin-kidney bean protein hydrolysate (PKH). Five milk treatments were prepared and evaluated as non-supplemented milk (M- Control), hen egg white protein isolate-supplemented milk (M-HPI), duck egg white protein isolate-supplemented milk (M-DPI), pepper seeds protein-supplemented milk (M-PSP), and kidney bean hydrolysate-supplemented milk (M-PKH). Pyrogallol, protocatechuic, catechin, benzoic and caffeine were the main phenolic compounds, Apignin-6-arabinose, naringin, hesperidin, naringenin, kaempferol 3-2-p-comaroyl were the dominant flavonoids in milk samples based on HPLC profile. During 30 days of cold storage, the antioxidant potential of peptides-supplemented milk samples was significantly decreased (p ≤ 0.05) as decrement of phenolic compounds and flavonoids; the pH was nearly stable, the titratable acidity and total soluble solids (TTS) were (p ≤ 0.05) raised. PSP and PKH were inhibited (p ≤ 0.05) the decay of sugars in M-PSP, and M-PKH by reducing 45% of bacterial load as compared to other milk samples. PSP was significantly (p ≤ 0.05) scavenged 87% of DPPH compared to other peptides. Besides, PSP followed by PKH reduced considerably (p ≤ 0.05) the growth of tested bacteria, molds, and yeasts. The PSP has significantly increased the whiteness of M-PSP as compared to other milk samples. M-PSP had the highest score in color, taste, and flavor, followed by M-PKH.

9.
Saudi J Biol Sci ; 28(8): 4592-4604, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34354445

RESUMO

This work aims to evaluate the antibacterial activity of biological zinc nanoparticles (BIO-ZnONPs) against pathogenic fish bacteria and assess the effect of BIO-ZnONPs on the performance, behavior, and immune response in Nile tilapia (Oreochromis niloticus) as compared to chemical zinc nanoparticles (CH- ZnONPs). Aspergillus niger TS16 fabricated the BIO-ZnONPs were spherical shape with the average size of 45 nm and net charge of -27.23 mV. Generally, the results indicate that BIO-ZnONPs were more effective than CH- ZnONPs in enhancing the performance properties of Nile tilapia. Five experimental groups of Nile tilapia (initial body weight of 20.2 g) were treated with two concentrations of 0.5 and 1 mg L-1 from biological and chemical ZnONPs, while the fifth group was served as a control. After ten weeks of treated water with ZnONPs, the performance, feed efficiency parameters, feeding, and swimming behaviors significantly improved in BIO-ZnONPs treated groups (P < 0.05). The liver function, LYZ activity, and NBT values were significantly enhanced in the 0.5 mg L-1 BIO-ZnONPS group compared to CH- ZnONPs group and control (P < 0.05). Furthermore, the lowest cortisol and the highest testosterone and growth hormone levels were recorded in 1 mg L-1 BIO-ZnONPs group. Regarding the antibacterial effects, BIO-ZnONPs displayed the lower total bacterial loads in water and fish tissues (intestine, gills, skin, and muscle) and the maximum antibacterial properties against pathogenic bacteria (Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Aeromonas hydrophila). Our study exemplifies novel findings of BIO-ZnONPs in the promotion of fish health and production and its antibacterial properties in Nile tilapia.

10.
Molecules ; 26(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361842

RESUMO

A new preservation approach is presented in this article to prolong the lifetime of raw chicken meat and enhance its quality at 4 °C via coating with highly soluble kidney bean protein hydrolysate. The hydrolysates of the black, red, and white kidney protein (BKH, RKH, and WKH) were obtained after 30 min enzymatic hydrolysis with Alcalase (E/S ratio of 1:100, hydrolysis degree 25-29%). The different phaseolin subunits (8S) appeared in SDS-PAGE in 35-45 kD molecular weight range while vicilin appeared in the molecular weight range of 55-75 kD. The kidney bean protein hydrolysates have considerable antioxidant activity as evidenced by the DPPH-scavenging activity and ß-carotine-linolenic assay, as well as antimicrobial activity evaluated by disc diffusion assay. BKH followed by RKH (800 µg/mL) significantly (p ≤ 0.05) scavenged 95, 91% of DPPH and inhibited 82-88% of linoleic oxidation. The three studied hydrolysates significantly inhibited the growth of bacteria, yeast, and fungi, where BKH was the most performing. Kidney bean protein hydrolysates could shield the chicken meat because of their amphoteric nature and many functional properties (water and oil-absorbing capacity and foaming stability). The quality of chicken meat was assessed by tracing the fluctuations in the chemical parameters (pH, met-myoglobin, lipid oxidation, and TVBN), bacterial load (total bacterial count, and psychrophilic count), color parameters and sensorial traits during cold preservation (4 °C). The hydrolysates (800 µg/g) significantly p ≤ 0.05 reduced the increment in meat pH and TVBN values, inhibited 59-70% of lipid oxidation as compared to control during 30 days of cold storage via eliminating 50% of bacterial load and maintained secured storage for 30 days. RKH and WKH significantly (p ≤ 0.05) enhanced L*, a* values, thus augmented the meat whiteness and redness, while, BKH increased b* values, declining all color parameters during meat storage. RKH and WKH (800 µg/g) (p ≤ 0.05) maintained 50-71% and 69-75% of meat color and odor, respectively, increased the meat juiciness after 30 days of cold storage. BKH, RKH and WKH can be safely incorporated into novel foods.


Assuntos
Galinhas/microbiologia , Conservantes de Alimentos , Carne/microbiologia , Phaseolus/química , Hidrolisados de Proteína , Subtilisinas/química , Animais , Microbiologia de Alimentos , Conservantes de Alimentos/química , Conservantes de Alimentos/farmacologia , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...