Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 274(Pt 2): 133442, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936578

RESUMO

A potential bio-adsorbent material for removing Rhodamine B (RB) from aqueous solution is Ru-MOF@FGA/CA beads. The adsorption capability of the material is probably enhanced by the use of a natural substance made of food-grade algae (FGA) and calcium alginate (CA), which has been cross-linked and loaded with ruthenium metal-organic frameworks (Ru-MOF). The Ru-MOF@FGA/CA beads were analyzed by XPS, PXRD, FT-IR, and SEM. The nitrogen adsorption-desorption isotherm analysis of the Ru-MOF@FGA/CA beads before and after the adsorption of RB revealed that had a surface area of 682 m2/g, a pore size of 2.92 nm, and a pore volume of 1.62 cc/g, that decreased after adsorption as the surface area reduced to 468.62 m2/g, while the pore volume reduced to 0.76 cc/g. indicating that the RB molecules occupied the available space within the pores of the material. The decrease in both surface area and pore volume specifies that the Ru-MOF@FGA/CA beads' pores were able to effectively adsorb the RB molecules. The adsorption of RB against the Ru-MOF@FGA/CA beads is affected by pH, adsorbent dose, starting RB concentration, and salinity. Controlling these factors can enhance the adsorption capability and effectiveness of the beads for RB removal. With an adsorption energy of 22.6 kJ/mol, the adsorption of RB onto the Ru-MOF@FGA/CA beads was determined to be a chemisorption process, demonstrating a strong bond among the adsorbent and the adsorbate. The pseudo-second-order kinetics and Langmuir isotherms were used to suit the adsorption process. Because the adsorption procedure was endothermic, it increased as the temperature increased. By using this information, the adsorption conditions may be improved, and the beads' ability to absorb RB can be increased. Up to six reuses of the Ru-MOF@FGA/CA beads are possible without affecting their chemical makeup and maintaining analogous PXRD and FT-IR data after each reuse. The adsorption process can be optimized through the application of the Box-Behnken design (BBD) approach and may entail H-bonding, electrostatic forces, n-π stacking, and pore filling. The exceptional stability of the beads makes them useful for creating long-lasting and efficient adsorbents that remove contaminants from water.

2.
Chirality ; 36(2): e23645, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38384154

RESUMO

We are looking into how well a copolymeric material made of poly (maleic acid-co-4-vinylpyridine) cross-linked with divinylbenzene can separate L-norepinephrine (L-NEP) from (±)-NEP. The initial step in this direction was the synthesis and subsequent analysis of L-NEP-maleimide chiral derivative. A 4-vinylpyridine/divinylbenzene combination was copolymerized with the resultant chiral maleimide. After heating the polymer materials in a high-alkaline environment to breakdown the connecting imide bonds, they were acidified in an HCl solution to eliminate the incorporated L-NEP species. Fourier transform infrared spectroscopy (FTIR) and a scanning electron microscope were used to examine the imprinted L-NEP-imprinted materials. The manufactured L-NEP-imprinted materials exhibited selectivity characteristics that were over 11 times greater for L-NEP than D-norepinephrine. The highest capacity observed in Langmuir adsorption studies was 170 mg/g at a pH of 7. After optical separation using a column technique, it was determined that the enantiomeric excess levels of D-norepinephrine and L-NEP in the first feeding and subsequent recovery solutions were 95% and 81%, respectively.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Compostos de Vinila , Norepinefrina , Impressão Molecular/métodos , Estereoisomerismo , Polímeros/química , Adsorção , Maleimidas
3.
Int J Biol Macromol ; 253(Pt 4): 126928, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37717875

RESUMO

Flurbiprofen (FP) is one of the non-steroidal anti-inflammatory drugs (NSAIDs) commonly used to treat arthritic conditions. FP has two enantiomers: S-FP and R-FP. S-FP has potent anti-inflammatory effects, while R-FP has nearly no such effects. Herein, molecularly imprinted microparticles produced from hydrazidine-cellulose (CHD) biopolymer for the preferential uptake of S-FP and chiral resolution of (±)-FP were developed. First, cyanoethylcellulose (CECN) was synthesized, and the -CN units were transformed into hydrazidine groups. The developed CHD was subsequently shaped into microparticles and ionically interacted with the S-FP enantiomer. The particles were then imprinted after being cross-linked with glutaraldehyde, and then the S-FP was removed to provide the S-FP enantio-selective sorbent (S-FPCHD). After characterization, the optimal removal settings for the S- and R-FP enantiomers were determined. The results indicated a capacity of 125 mg/g under the optimum pH range of 5-7. Also, S-FPCHD displayed a noticeable affinity toward S-FP with a 12-fold increase compared to the R-FP enantiomer. The chiral resolution of the (±)-FP was successfully attempted using separation columns, and the outlet sample of the loading solution displayed an enantiomeric excess (ee) of 93 % related to the R-FP, while the eluent solution displayed an ee value of 95 % related to the S-FP.


Assuntos
Flurbiprofeno , Flurbiprofeno/química , Anti-Inflamatórios não Esteroides , Celulose , Estereoisomerismo
4.
Molecules ; 28(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37446669

RESUMO

In this study, a novel nanohybrid composite was fabricated via the incorporation of manganese ferrite (MnFe2O4) nanoparticles into the integrated surface of reduced graphene oxide (rGO) and black cumin seeds (BC). The nanohybrid composite was prepared by a simple co-precipitation method and characterized by several spectroscopic and microscopic techniques. The characterization analysis revealed that the rGO-BC surface was decorated with the MnFe2O4. The strong chemical interaction (via electrostatic and H-bonding) between the integrated surface of rGO-BC and MnFe2O4 nanoparticles has been reported. The prepared composite was highly porous with a heterogeneous surface. The average size of the prepared composite was reported in the ranges of 2.6-7.0 nm. The specific surface area of the prepared composite was calculated to be 50.3 m2/g with a pore volume of 0.061 cc/g and a half pore width of 8.4 Å. As well, many functional sites on the nanohybrid composite surface were also found. This results in the excellent adsorption properties of nanohybrid composite and the effectual elimination of methylene blue dye from water. The nanohybrid was tested for various linear isotherms, such as Langmuir and Freundlich, for the adsorption of methylene blue dye. The Freundlich isotherm was the well-fitted model, proving the adsorption is multilayer. The maximum Langmuir adsorption capacity of nanohybrid composite for methylene blue was reported to be 74.627 mg/g at 27 °C. The adsorption kinetics followed the pseudo-second-order recommended surface interaction between the dye and nanohybrid composite. The interaction between methylene blue and the nanohybrid composite was also confirmed from the FTIR spectrum of the methylene blue-loaded adsorbent. The rate-determining step for the present study was intraparticle diffusion. Temperature-dependent studies of methylene blue adsorption were also carried out to estimate adsorption's free energy, enthalpy, and entropy. The methylene blue adsorption was feasible, spontaneous, and endothermic. A comparison study revealed that the present materials could be successfully prepared and used for wastewater treatment.


Assuntos
Nigella sativa , Poluentes Químicos da Água , Purificação da Água , Azul de Metileno/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Cinética , Concentração de Íons de Hidrogênio
5.
Luminescence ; 38(8): 1493-1500, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37259924

RESUMO

New fluorescent 4-alkoxyphenyl-nitrothiophene compounds 4a-d bearing diverse alkoxyl tails are described. The synthetic strategy was simply accomplished by alkali-assisted alkylation of 4-(5-nitrothiophen-2-yl)phenol (3) with propyl, hexyl, nonyl, and/or dodecyl iodide. The molecular structures were determined using infrared (IR), 1 H NMR, and mass spectroscopy. Ultraviolet-visible (UV-vis) absorption and emission spectra of the produced 4-alkoxyphenyl-nitrothiophenes revealed considerable extinction coefficients, which were shown to be controlled by the thiophene bridge in conjugation with the alkoxy donor moiety. It was found that the maximum absorbance wavelength was affected by the alkoxyl group-bonded substituents. The antioxidant efficiency obtained from the 4-alkoxyphenyl-nitrothiophene hybrids was excellent compared with that widely used drugs [butylated hydroxytoluene (BHT) and vitamin C]. Unlike 2-(4-[dodecyloxy]phenyl)-5-nitrothiophene hybrid 4d, which has made solid claims about the good effect of its reference drugs and vitamins, Docking investigations of the prepared 4-alkoxyphenyl-nitrothiophene hybrids towards the selected 5IKQ protein revealed impressive coordination and antioxidant effectiveness.


Assuntos
Antioxidantes , Ácido Ascórbico , Antioxidantes/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Fenômenos Químicos , Corantes
6.
Luminescence ; 38(3): 350-359, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36775810

RESUMO

Recently, various studies have focused on the development of multifunctional non-woven polyethylene terephthalate (PT; polyester) textiles. Herein, we introduce multifunctional non-woven polyester fabrics by pad dry curing silver nitrate (AgNO3 ) and aniline monomer into plasma-pretreated non-woven PT textile. This creates a nanocomposite layer of silver nanoparticles (AgNPs) and polyaniline (PANi) on the fabric surface. In order to prepare a non-woven fibrous mat, we applied the melt-spinning technique on previously shredded recycled PT plastic waste. On the surface of the cloth, PANi was synthesized by REDOX polymerization of aniline. Due to the oxidative polymerization, the silver ions (Ag+ ) were converted to Ag0 NPs. PANi acted as a conductor while AgNPs inhibited the growth of microorganisms. Microwave-assisted curing with trimethoxyhexadecylsilane (TMHDS) gave PT textiles with superhydrophobic properties. The morphological studies were performed using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The stiffness and breathability of finished non-woven PT textile materials were analyzed to establish their comfort levels. Both of Escherichia coli and Staphylococcus aureus were used to test the efficacy of the AgNPs-treated textiles as antimicrobial materials. Moreover, the processed polyester textiles showed excellent electrical conductivity and great ultraviolet-ray blocking.


Assuntos
Nanopartículas Metálicas , Polietilenotereftalatos , Nanopartículas Metálicas/química , Prata , Têxteis , Compostos de Anilina , Antibacterianos/química
7.
Biology (Basel) ; 10(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34827068

RESUMO

The facile bio-fabrication of zinc oxide (ZnO) nanoparticles (NPs) is described in this study using an aqueous leaf extract of Salvia officinalis L. as an efficient stabilizing/capping agent. Biosynthesis of nanomaterials using phytochemicals present in the plants has received great attention and is gaining significant importance as a possible alternative to the conventional chemical methods. The properties of the bio-fabricated ZnONPs were examined by different techniques, such as UV-visible spectroscopy, X-ray diffraction spectroscopy (XRD), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric/differential scanning calorimetry analysis (TGA/DTG). The photocatalytic activity of ZnONPs was investigated against methyl orange (MO) under UV light irradiation. Under optimum experimental conditions, ZnONPs exhibited 92.47% degradation of MO. Furthermore, the antifungal activity of bio-fabricated ZnONPs was determined against different clinical Candida albicans isolates following standard protocols of broth microdilution and disc diffusion assay. The susceptibility assay revealed that ZnONPs inhibit the growth of all the tested fungal isolates at varying levels with MIC values ranging from 7.81 to 1.95 µg/mL. Insight mechanisms of antifungal action appeared to be originated via inhibition of ergosterol biosynthesis and the disruption of membrane integrity. Thus, it was postulated that bio-fabricated ZnONPs have sustainable applications in developing novel antifungal agents with multiple drug targets. In addition, ZnONPs show efficient photocatalytic efficiency without any significant catalytic loss after the catalyst was recycled and reused multiple times.

8.
Toxics ; 9(5)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064502

RESUMO

The green chemistry method is the preferred approach for synthesizing metal and metal oxide nanoparticles because of its low toxicity, environmental friendliness, feasibility, and safety to human health compared with other chemical or physical methods. The present work reports the phytogenic synthesis of palladium nanoparticles (PdNPs) using an aqueous extract of Matricaria recutita (Chamomile). The phytochemical-mediated synthesis of PdNPs is an economical and eco-friendly approach without using toxic elements as reducing and capping or stabilizing agents. The UV-visible spectroscopic characterization was initially used to confirm the preparation of PdNPs using an aqueous extract of M. recutita flowers as a bioreductant for the reduction of Pd2+ to Pd0 without using any extra capping and reducing agents. The appearance of surface plasmon resonance (SPR) peak at 286 nm confirmed the formation of M. recutita extract-based PdNPs. Furthermore, the PdNPs were characterized by TEM, SEM, EDX, XRD, XPS, and FTIR to confirm their proper synthesis. The thermogravimetric analysis (TGA) was implemented to interpret the decomposition pattern and thermal stability of as-synthesized PdNPs. The biosynthesized PdNPs were further applied as a nanocatalyst in degradation of an azo dye Congo red (CR) in the presence of NaBH4. The catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) was also investigated in the presence of NaBH4. All the catalytic reactions were performed in water, and no significant loss in catalytic activity was observed after recovery and reusability of the biosynthesized PdNPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...