Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 24(5)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35626623

RESUMO

Iterative reconstruction of density pixel images from measured projections in computed tomography has attracted considerable attention. The ordered-subsets algorithm is an acceleration scheme that uses subsets of projections in a previously decided order. Several methods have been proposed to improve the convergence rate by permuting the order of the projections. However, they do not incorporate object information, such as shape, into the selection process. We propose a block-iterative reconstruction from sparse projection views with the dynamic selection of subsets based on an estimating function constructed by an extended power-divergence measure for decreasing the objective function as much as possible. We give a unified proposition for the inequality related to the difference between objective functions caused by one iteration as the theoretical basis of the proposed optimization strategy. Through the theory and numerical experiments, we show that nonuniform and sparse use of projection views leads to a reconstruction of higher-quality images and that an ordered subset is not the most effective for block-iterative reconstruction. The two-parameter class of extended power-divergence measures is the key to estimating an effective decrease in the objective function and plays a significant role in constructing a robust algorithm against noise.

2.
Entropy (Basel) ; 23(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34441145

RESUMO

The problem of tomographic image reconstruction can be reduced to an optimization problem of finding unknown pixel values subject to minimizing the difference between the measured and forward projections. Iterative image reconstruction algorithms provide significant improvements over transform methods in computed tomography. In this paper, we present an extended class of power-divergence measures (PDMs), which includes a large set of distance and relative entropy measures, and propose an iterative reconstruction algorithm based on the extended PDM (EPDM) as an objective function for the optimization strategy. For this purpose, we introduce a system of nonlinear differential equations whose Lyapunov function is equivalent to the EPDM. Then, we derive an iterative formula by multiplicative discretization of the continuous-time system. Since the parameterized EPDM family includes the Kullback-Leibler divergence, the resulting iterative algorithm is a natural extension of the maximum-likelihood expectation-maximization (MLEM) method. We conducted image reconstruction experiments using noisy projection data and found that the proposed algorithm outperformed MLEM and could reconstruct high-quality images that were robust to measured noise by properly selecting parameters.

3.
Comput Math Methods Med ; 2020: 3096067, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32963584

RESUMO

We give a novel approach for obtaining an intensity-modulated radiation therapy (IMRT) optimization solution based on the idea of continuous dynamical methods. The proposed method, which is an iterative algorithm derived from the discretization of a continuous-time dynamical system, can handle not only dose-volume but also mean-dose constraints directly in IMRT treatment planning. A theoretical proof for the convergence to an equilibrium corresponding to the desired IMRT planning is given by using the Lyapunov stability theorem. By introducing the concept of "acceptable," which means the existence of a nonempty set of beam weights satisfying the given dose-volume and mean-dose constraints, and by using the proposed method for an acceptable IMRT planning, one can resolve the issue that the objective and evaluation are different in the conventional planning process. Moreover, in the case where the target planning is totally unacceptable and partly acceptable except for one group of dose constraints, we give a procedure that enables us to obtain a nearly optimal solution close to the desired solution for unacceptable planning. The performance of the proposed approach for an acceptable or unacceptable planning is confirmed through numerical experiments simulating a clinical setup.


Assuntos
Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Biologia Computacional , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Conceitos Matemáticos , Neoplasias/patologia , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Radioterapia de Intensidade Modulada/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...