Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 5: 10135, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26036687

RESUMO

Fundamental understanding of ionic transport at the nanoscale is essential for developing biosensors based on nanopore technology and new generation high-performance nanofiltration membranes for separation and purification applications. We study here ionic transport through single putatively neutral hydrophobic nanopores with high aspect ratio (of length L = 6 µm with diameters ranging from 1 to 10 nm) and with a well controlled cylindrical geometry. We develop a detailed hybrid mesoscopic theoretical approach for the electrolyte conductivity inside nanopores, which considers explicitly ion advection by electro-osmotic flow and possible flow slip at the pore surface. By fitting the experimental conductance data we show that for nanopore diameters greater than 4 nm a constant weak surface charge density of about 10(-2) C m(-2) needs to be incorporated in the model to account for conductance plateaus of a few pico-siemens at low salt concentrations. For tighter nanopores, our analysis leads to a higher surface charge density, which can be attributed to a modification of ion solvation structure close to the pore surface, as observed in the molecular dynamics simulations we performed.

2.
Nanotechnology ; 26(10): 105501, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25694034

RESUMO

We explored for the first time the ability of a three-dimensional polyacrylonitrile/ZnO material-prepared by a combination of electrospinning and atomic layer deposition (ALD) as a new material with a large surface area-to enhance the performance of optical sensors for volatile organic compound (VOC) detection. The photoluminescence (PL) peak intensity of these one-dimensional nanostructures has been enhanced by a factor of 2000 compared to a flat Si substrate. In addition, a phase transition of the ZnO ALD coating from amorphous to crystalline has been observed due to the properties of a polyacrylonitrile nanofiber template: surface strain, roughness, and an increased number of nucleation sites in comparison with a flat Si substrate. The greatly improved PL performance of these nanostructured surfaces could produce exciting materials for implantation in VOC optical sensor applications.

3.
Beilstein J Nanotechnol ; 4: 690-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205465

RESUMO

A study of transmittance and photoluminescence spectra on the growth of oxygen-rich ultra-thin ZnO films prepared by atomic layer deposition is reported. The structural transition from an amorphous to a polycrystalline state is observed upon increasing the thickness. The unusual behavior of the energy gap with thickness reflected by optical properties is attributed to the improvement of the crystalline structure resulting from a decreasing concentration of point defects at the growth of grains. The spectra of UV and visible photoluminescence emissions correspond to transitions near the band-edge and defect-related transitions. Additional emissions were observed from band-tail states near the edge. A high oxygen ratio and variable optical properties could be attractive for an application of atomic layer deposition (ALD) deposited ultrathin ZnO films in optical sensors and biosensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...