Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 10397, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369701

RESUMO

The utilization of nanotechnology and biotechnology for enhancing the synthesis of plant bioactive chemicals is becoming increasingly common. The hairy root culture technique can be used to increase secondary metabolites such as tropane alkaloids. Agrobacterium was used to induce hairy roots from various explants of Hyoscyamus muticus. The effect of nano-silver particles (AgNPs) at concentrations of 0, 25, 50, 100, and 200 mg/L on tropane alkaloids synthesis, particularly hyoscyamine and scopolamine, was studied in transgenic hairy root cultures. Different types of explants obtained from 10-day-old seedlings of H. muticus were inoculated with two strains of Agrobacterium rhizogenes (15,834 and A4). The antimicrobial activity of an ethanolic extract of AgNPs-induced hairy root cultures of H. muticus was tested. The frequency of hairy roots was higher in hypocotyl, root, leaf, and stem explants treated with A. rhizogenes strain A4 compared to those treated with strain 15,834. In transgenic hairy root cultures, AgNPs application at a concentration of 100 mg/L resulted in the highest total tropane alkaloid production, which exhibited broad-spectrum antimicrobial activity. The study demonstrated the potential of nano-silver as an elicitor for promoting the production of target alkaloids in Hyoscyamus muticus hairy root cultures, which exhibit high biological activity.


Assuntos
Alcaloides , Anti-Infecciosos , Hyoscyamus , Nanopartículas Metálicas , Prata/farmacologia , Prata/metabolismo , Tropanos/farmacologia , Tropanos/metabolismo , Alcaloides/farmacologia , Alcaloides/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Raízes de Plantas/metabolismo
2.
J Taibah Univ Med Sci ; 18(2): 400-412, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37102074

RESUMO

Objectives: Tellurium has received substantial attention for its remarkable properties. This study performed in vitro and in vivo testing of the antibacterial action of tellurium nanoparticles biosynthesized in actinomycetes against methicillin-resistant Staphylococcus aureus (MRSA), a common blood bacterial pathogen. Methods: Nine actinomycete isolates were tested for their potential to reduce potassium tellurite (K2TeO3) and form tellurium nanoparticles (TeNPs). The most efficient actinomycete isolate in producing Tellerium nanoparticles was identified through molecular protocols. The generated TeNPs were characterized using UV, TEM, EDX, XRD and FTIR. The bacterial species implicated in bloodstream infections were detected at El Hussein Hospital. Bacterial identification and antibiotic susceptibility testing were performed using Vitek 2. An animal infection model was used to test the efficacy of the produced TeNPs against the most commonly isolated methicillin-resistant S. aureus using survival assays, colony counting, cytokine assessment and biochemical testing. Results: The most efficient actinomycete isolate was identified as Streptomyces graminisoli and given the accession number (OL773539). The mean particle size of the produced TeNPs was 21.4 nm, and rods and rosette forms were observed. Methicillin-resistant S. aureus (MRSA) was the main bacterium (60%) causing blood stream infections, and was followed by Escherichia coli (25%) and Klebsiella pneumoniae (15%). The produced TeNPs were tested against MRSA, the bacterium most frequently isolated from blood, and showed a promising action inhibition zone of 24 ± 0.7 mm and an MIC of 50 µg/ml. An animal infection model indicated the promise of TeNPs alone or in combination with standard drugs to combat MRSA in a rat intravenous infection model. Conclusion: TeNPs combined with vancomycin have successive impact to combat bacteremia for further verification of results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...