Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 624: 602-618, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35691228

RESUMO

Recent progress in nanotechnology via incorporation of small particle size as quantum dots (QDs) (1-10 nm) in many industrial activities and commercial products has led to significant undesired environmental impacts. Therefore, QDs removal from wastewater represents an interesting research topic with a lot of challenges for scientists and engineers nowadays. In this work, the coagulative removal of metal quantum dots as silver and gold from industrial water samples is explored. A novel biosorbent was assembled via binding of covalent organic frameworks (COFs) with magnetic zeolite and Arabic gum hydrogel (COFs@MagZ@AGH) as a promising removal material for Ag-QDs and Au-QDs. This was fully characterized by EDX, SEM, TEM, FT-IR, XPS, XRD and surface area and applied in coagulative removal of Au-QDs and Ag-QDs in presence of several experimental factors as pH, presence of other electrolytes, stirring time, initial QDs concentration, coagulant dosage, and temperature in order to optimize the removal processes. At optimum conditions, COFs@MagZ@AGH was able to recover 99.19% and 87.57% of Ag-QDs and Au-QDs QDs, respectively via chemical adsorption mechanism with perfect fitting to pseudo-second order model. Reuse of the recovered Ag/Au-QDs@COFs@MagZ@AGH as efficient catalysts in catalytic degradation of Rifampicin antibiotic (Rf) from water was additionally investigated and optimized via microwave-Fenton catalysts with excellent oxidative degradation efficiency (100%). Reusability and applicability of the biosorbent (COFs@MagZ@AGH) and catalysts (Ag/Au-QDs@COFs@MagZ@AGH) in real industrial water samples were also explored and successfully accomplished.


Assuntos
Estruturas Metalorgânicas , Pontos Quânticos , Zeolitas , Adsorção , Antibacterianos , Ouro , Goma Arábica , Hidrogéis , Estruturas Metalorgânicas/química , Micro-Ondas , Estresse Oxidativo , Pontos Quânticos/química , Rifampina , Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
2.
J Colloid Interface Sci ; 606(Pt 2): 1597-1608, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34500161

RESUMO

Recent industrial development and research progress in nanotechnology have led to the release of a number of nanomaterials with particle sizes (1-10 nm) which are categorized as quantum dots (QDs) in aquatic system. Disposal away of such QDs will cause potential pollution to the environment. Therefore, removal of disposed QDs from wastewater represents a challenging research subject for scientists and engineers. Hence, the objective of this study is devoted to assess the process of coagulative removal of silver quantum dots (Ag-QDs), as an example, from water by a novel super magnetic nanocomposite. Such material was aimed to prepare from the chemical combination and reaction of a generated Citrus sinensis and Citrus reticulata peels biochar (SMCsr-B) with spinel cobalt ferrite (CoFe2O4) as a super-magnetic source. The produced (SMCsr-B) was then crosslinked with polyurea-formaldehyde polymer (PUF) using EDA in only two minutes via microwave irradiation to produce (SMCsr-B/PUF). The SEM, EDX, FT-IR, XRD, and XPS analyses of the assembled (SMCsr-B/PUF) nanocomposite were acquired to confirm surface morphology and chemical structure. Controlling experimental factors were investigated as pH, time, and Ag-QDs pollutant concentration using microwave irradiative removal technique to establish the efficiency of coagulative adsorption of Ag-QDs onto (SMCsr-B/PUF). The solution (pH 5) was proved to exhibit the higher removal percentages of Ag-QDs in 15-25 s. SMCsr-B/PUF nanocomposite exhibited high removal efficiency as 93.12%, 92.39% and 92.48% upon using 20, 40 and 60 mg L-1 of Ag-QDs, respectively in presence of 10 mM NaCl. The kinetic and equilibrium adsorption data were best fitted to Freundlich model. The prepared SMCsr-B/PUF was successfully utilized as an efficient super magnetic nanocomposite for removal and recovery of Ag-QDs from aqueous environment.


Assuntos
Nanocompostos , Pontos Quânticos , Adsorção , Carvão Vegetal , Fenômenos Magnéticos , Polímeros , Prata , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...