Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36900017

RESUMO

The brain is the center of human control and communication. Hence, it is very important to protect it and provide ideal conditions for it to function. Brain cancer remains one of the leading causes of death in the world, and the detection of malignant brain tumors is a priority in medical image segmentation. The brain tumor segmentation task aims to identify the pixels that belong to the abnormal areas when compared to normal tissue. Deep learning has shown in recent years its power to solve this problem, especially the U-Net-like architectures. In this paper, we proposed an efficient U-Net architecture with three different encoders: VGG-19, ResNet50, and MobileNetV2. This is based on transfer learning followed by a bidirectional features pyramid network applied to each encoder to obtain more spatial pertinent features. Then, we fused the feature maps extracted from the output of each network and merged them into our decoder with an attention mechanism. The method was evaluated on the BraTS 2020 dataset to segment the different types of tumors and the results show a good performance in terms of dice similarity, with coefficients of 0.8741, 0.8069, and 0.7033 for the whole tumor, core tumor, and enhancing tumor, respectively.

2.
J Imaging ; 7(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34940736

RESUMO

Brain tumor is considered as one of the most serious causes of death in the world. Thus, it is very important to detect it as early as possible. In order to predict and segment the tumor, many approaches have been proposed. However, they suffer from different problems such as the necessity of the intervention of a specialist, the long required run-time and the choice of the appropriate feature extractor. To address these issues, we proposed an approach based on convolution neural network architecture aiming at predicting and segmenting simultaneously a cerebral tumor. The proposal was divided into two phases. Firstly, aiming at avoiding the use of the labeled image that implies a subject intervention of the specialist, we used a simple binary annotation that reflects the existence of the tumor or not. Secondly, the prepared image data were fed into our deep learning model in which the final classification was obtained; if the classification indicated the existence of the tumor, the brain tumor was segmented based on the feature representations generated by the convolutional neural network architectures. The proposed method was trained on the BraTS 2017 dataset with different types of gliomas. The achieved results show the performance of the proposed approach in terms of accuracy, precision, recall and Dice similarity coefficient. Our model showed an accuracy of 91% in tumor classification and a Dice similarity coefficient of 82.35% in tumor segmentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...