Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(4): 5898-5908, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35416026

RESUMO

Generators of random sequences used in high-end applications such as cryptography rely on entropy sources for their indeterminism. Physical processes governed by the laws of quantum mechanics are excellent sources of entropy available in nature. However, extracting enough entropy from such systems for generating truly random sequences is challenging while maintaining the feasibility of the extraction procedure for real-world applications. Here, we present a compact and an all-electronic van der Waals heterostructure-based device capable of detecting discrete charge fluctuations for extracting entropy from physical processes and use it for the generation of independent and identically distributed true random sequences. We extract a record-high value (>0.98 bits/bit) of min-entropy using the proposed scheme. We demonstrate an entropy generation rate tunable over multiple orders of magnitude and show the persistence of the underlying physical process for temperatures ranging from cryogenic to ambient conditions. We verify the random nature of the generated sequences using tests such as NIST SP 800-90B standard and other statistical measures and verify the suitability of our random sequence for cryptographic applications using the NIST SP 800-22 standard. The generated random sequences are then used in implementing various randomized algorithms without any preconditioning steps.

2.
ACS Nano ; 14(11): 15678-15687, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33091295

RESUMO

van der Waals (vdW) tunnel junctions are attractive because of their atomically sharp interface, gate tunability, and robustness against lattice mismatch between the successive layers. However, the negative differential resistance (NDR) demonstrated in this class of tunnel diodes often exhibits noisy behavior with low peak current density and lacks robustness and repeatability, limiting their practical circuit applications. Here, we propose a strategy of using a 1L-WS2 as an optimum tunnel barrier sandwiched in a broken gap tunnel junction of highly doped black phosphorus (BP) and SnSe2. We achieve high yield tunnel diodes exhibiting highly repeatable, ultraclean, and gate-tunable NDR characteristics with a signature of intrinsic oscillation, and a large peak-to-valley current ratio (PVCR) of 3.6 at 300 K (4.6 at 7 K), making them suitable for practical applications. We show that the thermodynamic stability of the vdW tunnel diode circuit can be tuned from astability to bistability by altering the constraint through choosing a voltage or a current bias, respectively. In the astable mode under voltage bias, we demonstrate a compact, voltage-controlled oscillator without the need for an external tank circuit. In the bistable mode under current bias, we demonstrate a highly scalable, single-element, one-bit memory cell that is promising for dense random access memory applications in memory intensive computation architectures.

3.
ACS Appl Mater Interfaces ; 11(33): 30010-30018, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31347352

RESUMO

Graphene, owing to its zero-band-gap electronic structure, is promising as an absorption material for ultra-wideband photodetection applications. However, graphene-absorption-based detectors inherently suffer from poor responsivity because of weak absorption and fast photocarrier recombination, limiting their viability for low-intensity light detection. Here, we use a graphene/WS2/MoS2 vertical heterojunction to demonstrate a highly sensitive photodetector, where the graphene layer serves dual purposes, namely, as the light absorption layer and also as the carrier conduction channel, thus maintaining the broadband nature of the photodetector. A fraction of the photoelectrons in graphene encounter ultrafast interlayer transfer to a floating monolayer MoS2 quantum well, providing a strong quantum-confined photogating effect. The photodetector shows a responsivity of 4.4 × 106 A/W at 30 fW incident power, outperforming photodetectors reported till date where graphene is used as a light absorption material by several orders. In addition, the proposed photodetector exhibits an extremely low noise equivalent power of <4 fW/ Hz and a fast response (∼milliseconds) with zero reminiscent photocurrent. The findings are attractive toward the demonstration of a graphene-based highly sensitive, fast, broadband photodetection technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...