Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Neuron ; 93(1): 194-210, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27989462

RESUMO

Thalamic relay neurons have well-characterized dual firing modes: bursting and tonic spiking. Studies in brain slices have led to a model in which rhythmic synchronized spiking (phasic firing) in a population of relay neurons leads to hyper-synchronous oscillatory cortico-thalamo-cortical rhythms that result in absence seizures. This model suggests that blocking thalamocortical phasic firing would treat absence seizures. However, recent in vivo studies in anesthetized animals have questioned this simple model. Here we resolve this issue by developing a real-time, mode-switching approach to drive thalamocortical neurons into or out of a phasic firing mode in two freely behaving genetic rodent models of absence epilepsy. Toggling between phasic and tonic firing in thalamocortical neurons launched and aborted absence seizures, respectively. Thus, a synchronous thalamocortical phasic firing state is required for absence seizures, and switching to tonic firing rapidly halts absences. This approach should be useful for modulating other networks that have mode-dependent behaviors.


Assuntos
Córtex Cerebral/fisiopatologia , Epilepsia Tipo Ausência/fisiopatologia , Rede Nervosa/fisiopatologia , Neurônios/fisiologia , Tálamo/fisiopatologia , Animais , Ondas Encefálicas , Córtex Cerebral/citologia , Modelos Animais de Doenças , Eletrocorticografia , Epilepsia/fisiopatologia , Camundongos , Vias Neurais , Optogenética , Técnicas de Patch-Clamp , Ratos , Tálamo/citologia
3.
Proc Natl Acad Sci U S A ; 112(48): 14805-10, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627235

RESUMO

Alterations in the efficacy of neuronal inhibition mediated by GABAA receptors (GABAARs) containing ß3 subunits are continually implicated in autism spectrum disorders (ASDs). In vitro, the plasma membrane stability of GABAARs is potentiated via phosphorylation of serine residues 408 and 409 (S408/9) in the ß3 subunit, an effect that is mimicked by their mutation to alanines. To assess if modifications in ß3 subunit expression contribute to ASDs, we have created a mouse in which S408/9 have been mutated to alanines (S408/9A). S408/9A homozygotes exhibited increased phasic, but decreased tonic, inhibition, events that correlated with alterations in the membrane stability and synaptic accumulation of the receptor subtypes that mediate these distinct forms of inhibition. S408/9A mice exhibited alterations in dendritic spine structure, increased repetitive behavior, and decreased social interaction, hallmarks of ASDs. ASDs are frequently comorbid with epilepsy, and consistent with this comorbidity, S408/9A mice exhibited a marked increase in sensitivity to seizures induced by the convulsant kainic acid. To assess the relevance of our studies using S408/9A mice for the pathophysiology of ASDs, we measured S408/9 phosphorylation in Fmr1 KO mice, a model of fragile X syndrome, the most common monogenetic cause of ASDs. Phosphorylation of S408/9 was selectively and significantly enhanced in Fmr1 KO mice. Collectively, our results suggest that alterations in phosphorylation and/or activity of ß3-containing GABAARs may directly contribute to the pathophysiology of ASDs.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Regulação da Expressão Gênica , Receptores de GABA-A/genética , Alanina/genética , Animais , Comportamento Animal , Biotinilação , Membrana Celular/metabolismo , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Fenômenos Eletrofisiológicos , Epilepsia/complicações , Medo , Técnicas de Introdução de Genes , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fenótipo , Fosforilação , Serina/genética , Comportamento Social , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo
4.
Proc Natl Acad Sci U S A ; 111(19): 7132-7, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24778259

RESUMO

Neurosteroids are synthesized within the brain and act as endogenous anxiolytic, anticonvulsant, hypnotic, and sedative agents, actions that are principally mediated via their ability to potentiate phasic and tonic inhibitory neurotransmission mediated by γ-aminobutyric acid type A receptors (GABAARs). Although neurosteroids are accepted allosteric modulators of GABAARs, here we reveal they exert sustained effects on GABAergic inhibition by selectively enhancing the trafficking of GABAARs that mediate tonic inhibition. We demonstrate that neurosteroids potentiate the protein kinase C-dependent phosphorylation of S443 within α4 subunits, a component of GABAAR subtypes that mediate tonic inhibition in many brain regions. This process enhances insertion of α4 subunit-containing GABAAR subtypes into the membrane, resulting in a selective and sustained elevation in the efficacy of tonic inhibition. Therefore, the ability of neurosteroids to modulate the phosphorylation and membrane insertion of α4 subunit-containing GABAARs may underlie the profound effects these endogenous signaling molecules have on neuronal excitability and behavior.


Assuntos
Neurônios/metabolismo , Neurotransmissores/metabolismo , Receptores de GABA-A/metabolismo , Filtro Sensorial/fisiologia , Sinapses/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Células HEK293 , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteína Quinase C/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de GABA-A/fisiologia , Filtro Sensorial/efeitos dos fármacos
5.
Cell Rep ; 2(3): 488-96, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-22999935

RESUMO

Systemic inflammation causes learning and memory deficits through mechanisms that remain poorly understood. Here, we studied the pathogenesis of memory loss associated with inflammation and found that we could reverse memory deficits by pharmacologically inhibiting α5-subunit-containing γ-aminobutyric acid type A (α5GABA(A)) receptors and deleting the gene associated with the α5 subunit. Acute inflammation reduces long-term potentiation, a synaptic correlate of memory, in hippocampal slices from wild-type mice, and this reduction was reversed by inhibition of α5GABA(A) receptor function. A tonic inhibitory current generated by α5GABA(A) receptors in hippocampal neurons was increased by the key proinflammatory cytokine interleukin-1ß through a p38 mitogen-activated protein kinase signaling pathway. Interleukin-1ß also increased the surface expression of α5GABA(A) receptors in the hippocampus. Collectively, these results show that α5GABA(A) receptor activity increases during inflammation and that this increase is critical for inflammation-induced memory deficits.


Assuntos
Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Receptores de GABA-A/metabolismo , Animais , Hipocampo/patologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Aprendizagem , Transtornos da Memória/genética , Transtornos da Memória/patologia , Camundongos , Camundongos Knockout , Receptores de GABA-A/genética , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologia
6.
J Biol Chem ; 285(53): 41795-805, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20940303

RESUMO

Tonic inhibition in the brain is mediated largely by specialized populations of extrasynaptic receptors, γ-aminobutyric acid receptors (GABA(A)Rs). In the dentate gyrus region of the hippocampus, tonic inhibition is mediated primarily by GABA(A)R subtypes assembled from α4ß2/3 with or without the δ subunit. Although the gating of these receptors is subject to dynamic modulation by agents such as anesthetics, barbiturates, and neurosteroids, the cellular mechanisms neurons use to regulate their accumulation on the neuronal plasma membrane remain to be determined. Using immunoprecipitation coupled with metabolic labeling, we demonstrate that the α4 subunit is phosphorylated at Ser(443) by protein kinase C (PKC) in expression systems and hippocampal slices. In addition, the ß3 subunit is phosphorylated on serine residues 408/409 by PKC activity, whereas the δ subunit did not appear to be a PKC substrate. We further demonstrate that the PKC-dependent increase of the cell surface expression of α4 subunit-containing GABA(A)Rs is dependent on Ser(443). Mechanistically, phosphorylation of Ser(443) acts to increase the stability of the α4 subunit within the endoplasmic reticulum, thereby increasing the rate of receptor insertion into the plasma membrane. Finally, we show that phosphorylation of Ser(443) increases the activity of α4 subunit-containing GABA(A)Rs by preventing current run-down. These results suggest that PKC-dependent phosphorylation of the α4 subunit plays a significant role in enhancing the cell surface stability and activity of GABA(A)R subtypes that mediate tonic inhibition.


Assuntos
Proteína Quinase C/metabolismo , Receptores de GABA-A/química , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Hipocampo/metabolismo , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Fosforilação , Serina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...