Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 12408, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455815

RESUMO

The cultivation of monosex populations is common in animal husbandry. However, preselecting the desired gender remains a major biotechnological and ethical challenge. To achieve an efficient biotechnology for all-female aquaculture in the economically important prawn (Macrobrachium rosenbergii), we achieved - for the first time - WW males using androgenic gland cells transplantation which caused full sex-reversal of WW females to functional males. Crossing the WW males with WW females yielded all-female progeny lacking the Z chromosome. We now have the ability to manipulate - by non-genomic means - all possible genotype combinations (ZZ, WZ and WW) to retain either male or female phenotypes and hence to produce monosex populations of either gender. This calls for a study of the genomic basis underlying this striking sexual plasticity, questioning the content of the W and Z chromosomes. Here, we report on the sequencing of a high-quality genome exhibiting distinguishable paternal and maternal sequences. This assembly covers ~ 87.5% of the genome and yielded a remarkable N50 value of ~ 20 × 106 bp. Genomic sex markers were used to initiate the identification and validation of parts of the W and Z chromosomes for the first time in arthropods.


Assuntos
Palaemonidae/genética , Cromossomos Sexuais , Animais , Feminino , Genoma , Genótipo , Larva/genética , Masculino , Palaemonidae/crescimento & desenvolvimento , Fenótipo , Análise para Determinação do Sexo , Diferenciação Sexual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...