Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(5): 4649-4654, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36777610

RESUMO

Determination of food freshness, which is the most ancient role of the human sense of smell, is still a challenge for compact and inexpensive electronic nose devices. Fast, sensitive, and reusable sensors are long-awaited in the food industry to replace slow, labor-intensive, and expensive bacteriological methods. In this work, we present microbiological verification of a novel approach to food quality monitoring and spoilage detection using an electronic nose based on organic field-effect transistors (OFETs) and its application for distinguishing products. The compact device presented is able to detect spoilage-related gases as early as at the 4 × 104 CFU g-1 bacteria count level, which is 2 orders of magnitude below the safe consumption threshold. Cross-selective sensor array based on OFETs with metalloporphyrin receptors were made on a single substrate using solution processing leading to a low production cost. Moreover, machine learning methods applied to the sensor array response allowed us to compare spoilage profiles and separate them by the type of food: pork, chicken, fish, or milk. The approach presented can be used to monitor food spoilage and distinguish different products with an affordable and portable device.

2.
Sci Rep ; 11(1): 10683, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021171

RESUMO

Modern solid-state gas sensors approaching ppb-level limit of detection open new perspectives for process control, environmental monitoring and exhaled breath analysis. Organic field-effect transistors (OFETs) are especially promising for gas sensing due to their outstanding sensitivities, low cost and small power consumption. However, they suffer of poor selectivity, requiring development of cross-selective arrays to distinguish analytes, and environmental instability, especially in humid air. Here we present the first fully integrated OFET-based electronic nose with the whole sensor array located on a single substrate. It features down to 30 ppb limit of detection provided by monolayer thick active layers and operates in air with up to 95% relative humidity. By means of principal component analysis, it is able to discriminate toxic air pollutants and monitor meat product freshness. The approach presented paves the way for developing affordable air sensing networks for the Internet of Things.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...