Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 65(4): 100534, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522750

RESUMO

The deposition of cholesterol-rich lipoproteins in the arterial wall triggers macrophage inflammatory responses, which promote atherosclerosis. The NLRP3 inflammasome aggravates atherosclerosis; however, cellular mechanisms connecting macrophage cholesterol accumulation to inflammasome activation are poorly understood. We investigated the mechanisms of NLRP3 inflammasome activation in cholesterol-loaded macrophages and in atherosclerosis-prone Ldlr-/- mice with defects in macrophage cholesterol efflux. We found that accumulation of cholesterol in macrophages treated with modified LDL or cholesterol crystals, or in macrophages defective in the cholesterol efflux promoting transporters ABCA1 and ABCG1, leads to activation of NLRP3 inflammasomes as a result of increased cholesterol trafficking from the plasma membrane to the ER, via Aster-B. In turn, the accumulation of cholesterol in the ER activates the inositol triphosphate-3 receptor, CaMKII/JNK, and induces NLRP3 deubiquitylation by BRCC3. An NLRP3 deubiquitylation inhibitor or deficiency of Abro1, an essential scaffolding protein in the BRCC3-containing cytosolic complex, suppressed inflammasome activation, neutrophil extracellular trap formation (NETosis), and atherosclerosis in vivo. These results identify a link between the trafficking of cholesterol to the ER, NLRP3 deubiquitylation, inflammasome activation, and atherosclerosis.


Assuntos
Aterosclerose , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Colesterol , Retículo Endoplasmático , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Camundongos , Colesterol/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Retículo Endoplasmático/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Transporte Biológico , Camundongos Knockout
2.
Nat Cardiovasc Res ; 3(1): 60-75, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38362011

RESUMO

Clonal hematopoiesis (CH) is an independent risk factor for atherosclerotic cardiovascular disease. Murine models of CH suggest a central role of inflammasomes and IL-1ß in accelerated atherosclerosis and plaque destabilization. Here we show using single-cell RNA sequencing in human carotid plaques that inflammasome components are enriched in macrophages, while the receptor for IL-1ß is enriched in fibroblasts and smooth muscle cells (SMCs). To address the role of inflammatory crosstalk in features of plaque destabilization, we conducted SMC fate mapping in Ldlr-/- mice modeling Jak2VF or Tet2 CH treated with IL-1ß antibodies. Unexpectedly, this treatment minimally affected SMC differentiation, leading instead to a prominent expansion of fibroblast-like cells. Depletion of fibroblasts from mice treated with IL-1ß antibody resulted in thinner fibrous caps. Conversely, genetic inactivation of Jak2VF during plaque regression promoted fibroblast accumulation and fibrous cap thickening. Our studies suggest that suppression of inflammasomes promotes plaque stabilization by recruiting fibroblast-like cells to the fibrous cap.

3.
Circulation ; 148(22): 1764-1777, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37781816

RESUMO

BACKGROUND: Clonal hematopoiesis (CH) has emerged as an independent risk factor for atherosclerotic cardiovascular disease, with activation of macrophage inflammasomes as a potential underlying mechanism. The NLRP3 (NLR family pyrin domain containing 3) inflammasome has a key role in promoting atherosclerosis in mouse models of Tet2 CH, whereas inhibition of the inflammasome product interleukin-1ß appeared to particularly benefit patients with TET2 CH in CANTOS (Cardiovascular Risk Reduction Study [Reduction in Recurrent Major CV Disease Events]). TET2 is an epigenetic modifier that decreases promoter methylation. However, the mechanisms underlying macrophage NLRP3 inflammasome activation in TET2 (Tet methylcytosine dioxygenase 2) deficiency and potential links with epigenetic modifications are poorly understood. METHODS: We used cholesterol-loaded TET2-deficient murine and embryonic stem cell-derived isogenic human macrophages to evaluate mechanisms of NLRP3 inflammasome activation in vitro and hypercholesterolemic Ldlr-/- mice modeling TET2 CH to assess the role of NLRP3 inflammasome activation in atherosclerosis. RESULTS: Tet2 deficiency in murine macrophages acted synergistically with cholesterol loading in cell culture and with hypercholesterolemia in vivo to increase JNK1 (c-Jun N-terminal kinase 1) phosphorylation and NLRP3 inflammasome activation. The mechanism of JNK (c-Jun N-terminal kinase) activation in TET2 deficiency was increased promoter methylation and decreased expression of the JNK-inactivating dual-specificity phosphatase Dusp10. Active Tet1-deadCas9-targeted editing of Dusp10 promoter methylation abolished cholesterol-induced inflammasome activation in Tet2-deficient macrophages. Increased JNK1 signaling led to NLRP3 deubiquitylation and activation by the deubiquitinase BRCC3 (BRCA1/BRCA2-containing complex subunit 3). Accelerated atherosclerosis and neutrophil extracellular trap formation (NETosis) in Tet2 CH mice were reversed by holomycin, a BRCC3 deubiquitinase inhibitor, and also by hematopoietic deficiency of Abro1, an essential scaffolding protein in the BRCC3-containing cytosolic complex. Human TET2-/- macrophages displayed increased JNK1 and NLRP3 inflammasome activation, especially after cholesterol loading, with reversal by holomycin treatment, indicating human relevance. CONCLUSIONS: Hypercholesterolemia and TET2 deficiency converge on a common pathway of NLRP3 inflammasome activation mediated by JNK1 activation and BRCC3-mediated NLRP3 deubiquitylation, with potential therapeutic implications for the prevention of cardiovascular disease in TET2 CH.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Dioxigenases , Hipercolesterolemia , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Colesterol/metabolismo , Hematopoiese Clonal , Enzimas Desubiquitinantes , Proteínas de Ligação a DNA/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
4.
Cardiovasc Res ; 119(4): 969-981, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36537208

RESUMO

AIMS: Neutrophil extracellular trap formation (NETosis) increases atherosclerotic plaque vulnerability and athero-thrombosis. However, mechanisms promoting NETosis during atherogenesis are poorly understood. We have shown that cholesterol accumulation due to myeloid cell deficiency of the cholesterol transporters ATP Binding Cassette A1 and G1 (ABCA1/G1) promotes NLRP3 inflammasome activation in macrophages and neutrophils and induces prominent NETosis in atherosclerotic plaques. We investigated whether NETosis is a cell-intrinsic effect in neutrophils or is mediated indirectly by cellular crosstalk from macrophages to neutrophils involving IL-1ß. METHODS AND RESULTS: We generated mice with neutrophil or macrophage-specific Abca1/g1 deficiency (S100A8CreAbca1fl/flAbcg1fl/fl or CX3CR1CreAbca1fl/flAbcg1fl/fl mice, respectively), and transplanted their bone marrow into low-density lipoprotein receptor knockout mice. We then fed the mice a cholesterol-rich diet. Macrophage, but not neutrophil Abca1/g1 deficiency activated inflammasomes in macrophages and neutrophils, reflected by caspase-1 cleavage, and induced NETosis in plaques. NETosis was suppressed by administering an interleukin (IL)-1ß neutralizing antibody. The extent of NETosis in plaques correlated strongly with the degree of neutrophil accumulation, irrespective of blood neutrophil counts, and neutrophil accumulation was decreased by IL-1ß antagonism. In vitro, IL-1ß or media transferred from Abca1/g1-deficient macrophages increased NETosis in both control and Abca1/Abcg1 deficient neutrophils. This cell-extrinsic effect of IL-1ß on NETosis was blocked by an NLRP3 inhibitor. CONCLUSION: These studies establish a new link between inflammasome-mediated IL-1ß production in macrophages and NETosis in atherosclerotic plaques. Macrophage-derived IL-1ß appears to increase NETosis both by increasing neutrophil recruitment to plaques and by promoting neutrophil NLRP3 inflammasome activation.


Assuntos
Placa Aterosclerótica , Camundongos , Animais , Placa Aterosclerótica/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos/metabolismo , Colesterol/metabolismo , Camundongos Knockout
5.
J Clin Invest ; 132(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35587375

RESUMO

Elevated hematocrit is associated with cardiovascular risk; however, the causality and mechanisms are unclear. The JAK2V617F (Jak2VF) mutation increases cardiovascular risk in myeloproliferative disorders and in clonal hematopoiesis. Jak2VF mice with elevated WBCs, platelets, and RBCs display accelerated atherosclerosis and macrophage erythrophagocytosis. To investigate whether selective erythroid Jak2VF expression promotes atherosclerosis, we developed hyperlipidemic erythropoietin receptor Cre mice that express Jak2VF in the erythroid lineage (VFEpoR mice). VFEpoR mice without elevated blood cell counts showed increased atherosclerotic plaque necrosis, erythrophagocytosis, and ferroptosis. Selective induction of erythrocytosis with low-dose erythropoietin further exacerbated atherosclerosis with prominent ferroptosis, lipid peroxidation, and endothelial damage. VFEpoR RBCs had reduced antioxidant defenses and increased lipid hydroperoxides. Phagocytosis of human or murine WT or JAK2VF RBCs by WT macrophages induced ferroptosis, which was prevented by the ferroptosis inhibitor liproxstatin-1. Liproxstatin-1 reversed increased atherosclerosis, lipid peroxidation, ferroptosis, and endothelial damage in VFEpoR mice and in Jak2VF chimeric mice simulating clonal hematopoiesis, but had no impact in controls. Erythroid lineage Jak2VF expression led to qualitative and quantitative defects in RBCs that exacerbated atherosclerosis. Phagocytosis of RBCs by plaque macrophages promoted ferroptosis, suggesting a therapeutic target for reducing RBC-mediated cardiovascular risk.


Assuntos
Aterosclerose , Ferroptose , Linfo-Histiocitose Hemofagocítica , Placa Aterosclerótica , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Linhagem da Célula , Macrófagos/metabolismo , Camundongos , Fagocitose , Placa Aterosclerótica/metabolismo
6.
Arterioscler Thromb Vasc Biol ; 42(6): 719-731, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35477277

RESUMO

BACKGROUND: Cholesterol loaded macrophage foam cells are a prominent feature of atherosclerotic plaques. Single-cell RNA sequencing has identified foam cells as TREM2 (triggering receptor expressed on myeloid cells 2) positive populations with low expression of inflammatory genes, resembling the TREM2 positive microglia of neurodegenerative diseases. Cholesterol loading of macrophages in vitro results in activation of LXR (liver X receptor) transcription factors and suppression of inflammatory genes. METHODS: To test the hypothesis that LXRs mediate anti-inflammatory effects in Trem2 expressing atherosclerotic plaque foam cells, we performed RNA profiling on plaque cells from hypercholesterolemic mice with myeloid LXR deficiency. RESULTS: Myeloid LXR deficiency led to a dramatic increase in atherosclerosis with increased monocyte entry, foam cell formation, and plaque inflammation. Bulk cell-RNA profiling of plaque myeloid cells showed prominent upregulation of inflammatory mediators including oxidative, chemokine, and chemotactic genes. Single-cell RNA sequencing revealed increased numbers of foamy TREM2-expressing macrophages; however, these cells had reduced expression of the Trem2 gene expression module, including phagocytic and cholesterol efflux genes, and had switched to a proinflammatory and proliferative phenotype. Expression of Trem2 was suppressed by inflammatory signals but not directly affected by LXR activation in bone marrow-derived macrophages. CONCLUSIONS: Our current studies reveal the key role of macrophage LXRs in promoting the Trem2 gene expression program and in suppressing inflammation in foam cells of atherosclerotic plaques.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Células Espumosas/metabolismo , Expressão Gênica , Inflamação/genética , Inflamação/metabolismo , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Placa Aterosclerótica/metabolismo , RNA , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
7.
Circulation ; 144(24): 1940-1954, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34846914

RESUMO

BACKGROUND: LNK/SH2B3 inhibits Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling by hematopoietic cytokine receptors. Genome-wide association studies have shown association of a common single nucleotide polymorphism in LNK (R262W, T allele) with neutrophilia, thrombocytosis, and coronary artery disease. We have shown that LNK(TT) reduces LNK function and that LNK-deficient mice display prominent platelet-neutrophil aggregates, accelerated atherosclerosis, and thrombosis. Platelet-neutrophil interactions can promote neutrophil extracellular trap (NET) formation. The goals of this study were to assess the role of NETs in atherosclerosis and thrombosis in mice with hematopoietic Lnk deficiency. METHODS: We bred mice with combined deficiency of Lnk and the NETosis-essential enzyme PAD4 (peptidyl arginine deiminase 4) and transplanted their bone marrow into Ldlr-/- mice. We evaluated the role of LNK in atherothrombosis in humans and mice bearing a gain of function variant in JAK2 (JAK2V617F). RESULTS: Lnk-deficient mice displayed accelerated carotid artery thrombosis with prominent NETosis that was completely reversed by PAD4 deficiency. Thrombin-activated Lnk-/- platelets promoted increased NETosis when incubated with Lnk-/- neutrophils compared with wild-type platelets or wild-type neutrophils. This involved increased surface exposure and release of oxidized phospholipids (OxPL) from Lnk-/- platelets, as well as increased priming and response of Lnk-/- neutrophils to OxPL. To counteract the effects of OxPL, we introduced a transgene expressing the single-chain variable fragment of E06 (E06-scFv). E06-scFv reversed accelerated NETosis, atherosclerosis, and thrombosis in Lnk-/- mice. We also showed increased NETosis when human induced pluripotent stem cell-derived LNK(TT) neutrophils were incubated with LNK(TT) platelet/megakaryocytes, but not in isogenic LNK(CC) controls, confirming human relevance. Using data from the UK Biobank, we found that individuals with the JAK2VF mutation only showed increased risk of coronary artery disease when also carrying the LNK R262W allele. Mice with hematopoietic Lnk+/- and Jak2VF clonal hematopoiesis showed accelerated arterial thrombosis but not atherosclerosis compared with Jak2VFLnk+/+ controls. CONCLUSIONS: Hematopoietic Lnk deficiency promotes NETosis and arterial thrombosis in an OxPL-dependent fashion. LNK(R262W) reduces LNK function in human platelets and neutrophils, promoting NETosis, and increases coronary artery disease risk in humans carrying Jak2VF mutations. Therapies targeting OxPL may be beneficial for coronary artery disease in genetically defined human populations.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Plaquetas/metabolismo , Neutrófilos/metabolismo , Fosfolipídeos/metabolismo , Agregação Plaquetária , Trombose/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Artérias/metabolismo , Camundongos , Camundongos Knockout , Oxirredução , Fosfolipídeos/genética , Trombose/genética
8.
Nature ; 592(7853): 296-301, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33731931

RESUMO

Clonal haematopoiesis, which is highly prevalent in older individuals, arises from somatic mutations that endow a proliferative advantage to haematopoietic cells. Clonal haematopoiesis increases the risk of myocardial infarction and stroke independently of traditional risk factors1. Among the common genetic variants that give rise to clonal haematopoiesis, the JAK2V617F (JAK2VF) mutation, which increases JAK-STAT signalling, occurs at a younger age and imparts the strongest risk of premature coronary heart disease1,2. Here we show increased proliferation of macrophages and prominent formation of necrotic cores in atherosclerotic lesions in mice that express Jak2VF selectively in macrophages, and in chimeric mice that model clonal haematopoiesis. Deletion of the essential inflammasome components caspase 1 and 11, or of the pyroptosis executioner gasdermin D, reversed these adverse changes. Jak2VF lesions showed increased expression of AIM2, oxidative DNA damage and DNA replication stress, and Aim2 deficiency reduced atherosclerosis. Single-cell RNA sequencing analysis of Jak2VF lesions revealed a landscape that was enriched for inflammatory myeloid cells, which were suppressed by deletion of Gsdmd. Inhibition of the inflammasome product interleukin-1ß reduced macrophage proliferation and necrotic formation while increasing the thickness of fibrous caps, indicating that it stabilized plaques. Our findings suggest that increased proliferation and glycolytic metabolism in Jak2VF macrophages lead to DNA replication stress and activation of the AIM2 inflammasome, thereby aggravating atherosclerosis. Precise application of therapies that target interleukin-1ß or specific inflammasomes according to clonal haematopoiesis status could substantially reduce cardiovascular risk.


Assuntos
Aterosclerose/patologia , Hematopoiese Clonal , Proteínas de Ligação a DNA/metabolismo , Inflamassomos/metabolismo , Animais , Anticorpos/imunologia , Anticorpos/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Medula Óssea/metabolismo , Caspase 1/metabolismo , Caspases Iniciadoras/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Interleucina-1beta/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Fosfato/metabolismo , Piroptose , RNA-Seq , Análise de Célula Única
9.
Arterioscler Thromb Vasc Biol ; 39(12): e253-e272, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31578081

RESUMO

OBJECTIVE: HDL (high-density lipoprotein) infusion reduces atherosclerosis in animal models and is being evaluated as a treatment in humans. Studies have shown either anti- or proinflammatory effects of HDL in macrophages, and there is no consensus on the underlying mechanisms. Here, we interrogate the effects of HDL on inflammatory gene expression in macrophages. Approach and Results: We cultured bone marrow-derived macrophages, treated them with reconstituted HDL or HDL isolated from APOA1Tg;Ldlr-/- mice, and challenged them with lipopolysaccharide. Transcriptional profiling showed that HDL exerts a broad anti-inflammatory effect on lipopolysaccharide-induced genes and proinflammatory effect in a subset of genes enriched for chemokines. Cholesterol removal by POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine) liposomes or ß-methylcyclodextrin mimicked both pro- and anti-inflammatory effects of HDL, whereas cholesterol loading by POPC/cholesterol-liposomes or acetylated LDL (low-density lipoprotein) before HDL attenuated these effects, indicating that these responses are mediated by cholesterol efflux. While early anti-inflammatory effects reflect reduced TLR (Toll-like receptor) 4 levels, late anti-inflammatory effects are due to reduced IFN (interferon) receptor signaling. Proinflammatory effects occur late and represent a modified endoplasmic reticulum stress response, mediated by IRE1a (inositol-requiring enzyme 1a)/ASK1 (apoptosis signal-regulating kinase 1)/p38 MAPK (p38 mitogen-activated protein kinase) signaling, that occurs under conditions of extreme cholesterol depletion. To investigate the effects of HDL on inflammatory gene expression in myeloid cells in atherosclerotic lesions, we injected reconstituted HDL into Apoe-/- or Ldlr-/- mice fed a Western-type diet. Reconstituted HDL infusions produced anti-inflammatory effects in lesion macrophages without any evidence of proinflammatory effects. CONCLUSIONS: Reconstituted HDL infusions in hypercholesterolemic atherosclerotic mice produced anti-inflammatory effects in lesion macrophages suggesting a beneficial therapeutic effect of HDL in vivo.


Assuntos
Aorta Torácica/patologia , Proteínas de Transporte/genética , Regulação da Expressão Gênica , Inflamação/genética , Lipoproteínas HDL/farmacologia , Macrófagos/metabolismo , Placa Aterosclerótica/genética , Animais , Aorta Torácica/metabolismo , Proteínas de Transporte/biossíntese , Células Cultivadas , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Immunoblotting , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Proteínas Recombinantes
10.
Circulation ; 138(9): 898-912, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-29588315

RESUMO

BACKGROUND: The CANTOS trial (Canakinumab Antiinflammatory Thrombosis Outcome Study) showed that antagonism of interleukin (IL)-1ß reduces coronary heart disease in patients with a previous myocardial infarction and evidence of systemic inflammation, indicating that pathways required for IL-1ß secretion increase cardiovascular risk. IL-1ß and IL-18 are produced via the NLRP3 inflammasome in myeloid cells in response to cholesterol accumulation, but mechanisms linking NLRP3 inflammasome activation to atherogenesis are unclear. The cholesterol transporters ATP binding cassette A1 and G1 (ABCA1/G1) mediate cholesterol efflux to high-density lipoprotein, and Abca1/g1 deficiency in myeloid cells leads to cholesterol accumulation. METHODS: To interrogate mechanisms connecting inflammasome activation with atherogenesis, we used mice with myeloid Abca1/g1 deficiency and concomitant deficiency of the inflammasome components Nlrp3 or Caspase-1/11. Bone marrow from these mice was transplanted into Ldlr-/- recipients, which were fed a Western-type diet. RESULTS: Myeloid Abca1/g1 deficiency increased plasma IL-18 levels in Ldlr-/- mice and induced IL-1ß and IL-18 secretion in splenocytes, which was reversed by Nlrp3 or Caspase-1/11 deficiency, indicating activation of the NLRP3 inflammasome. Nlrp3 or Caspase-1/11 deficiency decreased atherosclerotic lesion size in myeloid Abca1/g1-deficient Ldlr-/- mice. Myeloid Abca1/g1 deficiency enhanced caspase-1 cleavage not only in splenic monocytes and macrophages, but also in neutrophils, and dramatically enhanced neutrophil accumulation and neutrophil extracellular trap formation in atherosclerotic plaques, with reversal by Nlrp3 or Caspase-1/11 deficiency, suggesting that inflammasome activation promotes neutrophil recruitment and neutrophil extracellular trap formation in atherosclerotic plaques. These effects appeared to be indirectly mediated by systemic inflammation leading to activation and accumulation of neutrophils in plaques. Myeloid Abca1/g1 deficiency also activated the noncanonical inflammasome, causing increased susceptibility to lipopolysaccharide-induced mortality. Patients with Tangier disease, who carry loss-of-function mutations in ABCA1 and have increased myeloid cholesterol content, showed a marked increase in plasma IL-1ß and IL-18 levels. CONCLUSIONS: Cholesterol accumulation in myeloid cells activates the NLRP3 inflammasome, which enhances neutrophil accumulation and neutrophil extracellular trap formation in atherosclerotic plaques. Patients with Tangier disease, who have increased myeloid cholesterol content, showed markers of inflammasome activation, suggesting human relevance.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Aterosclerose/prevenção & controle , Colesterol/metabolismo , Armadilhas Extracelulares/metabolismo , Inflamassomos/metabolismo , Inflamação/prevenção & controle , Células Mieloides/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transportador 1 de Cassete de Ligação de ATP/deficiência , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/deficiência , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Estudos de Casos e Controles , Caspase 1/genética , Caspase 1/metabolismo , Caspases/genética , Caspases/metabolismo , Caspases Iniciadoras , Citocinas/sangue , Modelos Animais de Doenças , Humanos , Inflamassomos/deficiência , Inflamassomos/genética , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos Knockout , Células Mieloides/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Placa Aterosclerótica , Receptores de LDL/genética , Receptores de LDL/metabolismo , Baço/metabolismo , Doença de Tangier/sangue , Doença de Tangier/genética
11.
Nature ; 535(7611): 303-7, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27383786

RESUMO

Cellular mechanisms that mediate steatohepatitis, an increasingly prevalent condition in the Western world for which no therapies are available, are poorly understood. Despite the fact that its synthetic agonists induce fatty liver, the liver X receptor (LXR) transcription factor remains a target of interest because of its anti-atherogenic, cholesterol removal, and anti-inflammatory activities. Here we show that tetratricopeptide repeat domain protein 39B (Ttc39b, C9orf52) (T39), a high-density lipoprotein gene discovered in human genome-wide association studies, promotes the ubiquitination and degradation of LXR. Chow-fed mice lacking T39 (T39(-/-)) display increased high-density lipoprotein cholesterol levels associated with increased enterocyte ATP-binding cassette transporter A1 (Abca1) expression and increased LXR protein without change in LXR messenger RNA. When challenged with a high fat/high cholesterol/bile salt diet, T39(-/-) mice or mice with hepatocyte-specific T39 deficiency show increased hepatic LXR protein and target gene expression, and unexpectedly protection from steatohepatitis and death. Mice fed a Western-type diet and lacking low-density lipoprotein receptor (Ldlr(-/-)T39(-/-)) show decreased fatty liver, increased high-density lipoprotein, decreased low-density lipoprotein, and reduced atherosclerosis. In addition to increasing hepatic Abcg5/8 expression and limiting dietary cholesterol absorption, T39 deficiency inhibits hepatic sterol regulatory element-binding protein 1 (SREBP-1, ADD1) processing. This is explained by an increase in microsomal phospholipids containing polyunsaturated fatty acids, linked to an LXRα-dependent increase in expression of enzymes mediating phosphatidylcholine biosynthesis and incorporation of polyunsaturated fatty acids into phospholipids. The preservation of endogenous LXR protein activates a beneficial profile of gene expression that promotes cholesterol removal and inhibits lipogenesis. T39 inhibition could be an effective strategy for reducing both steatohepatitis and atherosclerosis.


Assuntos
Aterosclerose/genética , Fígado Gorduroso/genética , Lipoproteínas HDL/deficiência , Lipoproteínas HDL/genética , Receptores Nucleares Órfãos/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Aterosclerose/prevenção & controle , Aterosclerose/terapia , Ácidos e Sais Biliares/metabolismo , Colesterol na Dieta/metabolismo , HDL-Colesterol/metabolismo , Dieta Hiperlipídica , Ácidos Graxos Insaturados/metabolismo , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/terapia , Feminino , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Ligantes , Lipogênese/genética , Lipoproteínas/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Receptores X do Fígado , Masculino , Camundongos , Receptores Nucleares Órfãos/genética , Fosfatidilcolinas/biossíntese , Fosfatidilcolinas/metabolismo , Estabilidade Proteica , Proteólise , Receptores de LDL/deficiência , Receptores de LDL/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ubiquitinação
12.
Arterioscler Thromb Vasc Biol ; 36(7): 1328-37, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27199450

RESUMO

OBJECTIVE: Plasma high-density lipoproteins have several putative antiatherogenic effects, including preservation of endothelial functions. This is thought to be mediated, in part, by the ability of high-density lipoproteins to promote cholesterol efflux from endothelial cells (ECs). The ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) interact with high-density lipoproteins to promote cholesterol efflux from ECs. To determine the impact of endothelial cholesterol efflux pathways on atherogenesis, we prepared mice with endothelium-specific knockout of Abca1 and Abcg1. APPROACH AND RESULTS: Generation of mice with EC-ABCA1 and ABCG1 deficiency required crossbreeding Abca1(fl/fl)Abcg1(fl/fl)Ldlr(-/-) mice with the Tie2Cre strain, followed by irradiation and transplantation of Abca1(fl/fl)Abcg1(fl/fl) bone marrow to abrogate the effects of macrophage ABCA1 and ABCG1 deficiency induced by Tie2Cre. After 20 to 22 weeks of Western-type diet, both single EC-Abca1 and Abcg1 deficiency increased atherosclerosis in the aortic root and whole aorta. Combined EC-Abca1/g1 deficiency caused a significant further increase in lesion area at both sites. EC-Abca1/g1 deficiency dramatically enhanced macrophage lipid accumulation in the branches of the aorta that are exposed to disturbed blood flow, decreased aortic endothelial NO synthase activity, and increased monocyte infiltration into the atherosclerotic plaque. Abca1/g1 deficiency enhanced lipopolysaccharide-induced inflammatory gene expression in mouse aortic ECs, which was recapitulated by ABCG1 deficiency in human aortic ECs. CONCLUSIONS: These studies provide direct evidence that endothelial cholesterol efflux pathways mediated by ABCA1 and ABCG1 are nonredundant and atheroprotective, reflecting preservation of endothelial NO synthase activity and suppression of endothelial inflammation, especially in regions of disturbed arterial blood flow.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/deficiência , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/deficiência , Aorta Torácica/metabolismo , Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Colesterol/metabolismo , Células Endoteliais/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Transplante de Medula Óssea , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/patologia , Predisposição Genética para Doença , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Knockout , Monócitos/metabolismo , Neovascularização Fisiológica , Óxido Nítrico Sintase Tipo III/metabolismo , Fenótipo , Placa Aterosclerótica , Receptores de LDL/deficiência , Receptores de LDL/genética , Fluxo Sanguíneo Regional , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos , Irradiação Corporal Total
13.
Circ Cardiovasc Genet ; 9(3): 213-22, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27098250

RESUMO

BACKGROUND: Genome-wide association studies for coronary artery disease/myocardial infarction revealed a 58 kb risk locus on 9p21.3. Refined genetic analyses revealed unique haplotype blocks conferring susceptibility to atherosclerosis per se versus risk for acute complications in the presence of underlying coronary artery disease. The cell proliferation inhibitor locus, CDKN2A, maps just upstream of the myocardial infarction risk block, is at least partly regulated by the noncoding RNA, ANRIL, overlapping the risk block, and has been associated with platelet counts in humans. Thus, we tested the hypothesis that CDKN2A deficiency predisposes to increased platelet production, leading to increased platelet activation in the setting of hypercholesterolemia. METHODS AND RESULTS: Platelet production and activation were measured in B6-Ldlr(-/-)Cdkn2a(+/-) mice and a congenic strain carrying the region of homology with the human 9p21.3/CDKN2A locus. The strains exhibit decreased expression of CDKN2A (both p16(INK4a) and p19(ARF)) but not CDKN2B (p15(INK4b)). Compared with B6-Ldlr(-/-) controls, both Cdkn2a-deficient strains exhibited increased platelet counts and bone marrow megakaryopoiesis. The platelet overproduction phenotype was reversed by treatment with cyclin-dependent kinase 4/6 inhibitor, PD0332991/palbociclib, that mimics the endogenous effect of p16(INK4a). Western diet feeding resulted in increased platelet activation, increased thrombin/antithrombin complex, and decreased bleeding times in Cdkn2a-deficient mice compared with controls. CONCLUSIONS: Together, the data suggest that one or more Cdkn2a transcripts modulate platelet production and activity in the setting of hypercholesterolemia, amenable to pharmaceutical intervention. Enhanced platelet production and activation may predispose to arterial thrombosis, suggesting an explanation, at least in part, for the association of 9p21.3 and myocardial infarction.


Assuntos
Aterosclerose/enzimologia , Plaquetas/enzimologia , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Hipercolesterolemia/enzimologia , Megacariócitos/enzimologia , Ativação Plaquetária , Receptores de LDL/deficiência , Trombocitopenia/enzimologia , Trombopoese , Animais , Antitrombina III/metabolismo , Aterosclerose/sangue , Aterosclerose/genética , Plaquetas/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p18/genética , Modelos Animais de Doenças , Predisposição Genética para Doença , Hipercolesterolemia/sangue , Hipercolesterolemia/genética , Megacariócitos/efeitos dos fármacos , Camundongos Congênicos , Camundongos Knockout , Peptídeo Hidrolases/metabolismo , Fenótipo , Ativação Plaquetária/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptores de LDL/genética , Trombocitopenia/sangue , Trombocitopenia/genética , Trombocitopenia/prevenção & controle , Trombopoese/efeitos dos fármacos
14.
Circ Res ; 114(10): 1576-84, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24687132

RESUMO

RATIONALE: The mammalian target of rapamycin complex 1 inhibitor, rapamycin, has been shown to decrease atherosclerosis, even while increasing plasma low-density lipoprotein levels. This suggests an antiatherogenic effect possibly mediated by the modulation of inflammatory responses in atherosclerotic plaques. OBJECTIVE: Our aim was to assess the role of macrophage mammalian target of rapamycin complex 1 in atherogenesis. METHODS AND RESULTS: We transplanted bone marrow from mice in which a key mammalian target of rapamycin complex 1 adaptor, regulatory-associated protein of mTOR, was deleted in macrophages by Cre/loxP recombination (Mac-Rap(KO) mice) into Ldlr(-/-) mice and then fed them the Western-type diet. Atherosclerotic lesions from Mac-Rap(KO) mice showed decreased infiltration of macrophages, lesion size, and chemokine gene expression compared with control mice. Treatment of macrophages with minimally modified low-density lipoprotein resulted in increased levels of chemokine mRNAs and signal transducer and activator of transcription (STAT) 3 phosphorylation; these effects were reduced in Mac-Rap(KO) macrophages. Although wild-type and Mac-Rap(KO) macrophages showed similar STAT3 phosphorylation on Tyr705, Mac-Rap(KO) macrophages showed decreased STAT3Ser727 phosphorylation in response to minimally modified low-density lipoprotein treatment and decreased Ccl2 promoter binding of STAT3. CONCLUSIONS: The results demonstrate cross-talk between nutritionally induced mammalian target of rapamycin complex 1 signaling and minimally modified low-density lipoprotein-mediated inflammatory signaling via combinatorial phosphorylation of STAT3 in macrophages, leading to increased STAT3 activity on the chemokine (C-C motif) ligand 2 (monocyte chemoattractant protein 1) promoter with proatherogenic consequences.


Assuntos
Aterosclerose/metabolismo , Quimiocinas/biossíntese , Regulação da Expressão Gênica , Macrófagos Peritoneais/enzimologia , Complexos Multiproteicos/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Quimiocinas/genética , Gorduras na Dieta/efeitos adversos , Macrófagos Peritoneais/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Camundongos Transgênicos , Complexos Multiproteicos/fisiologia , Fator de Transcrição STAT3/biossíntese , Fator de Transcrição STAT3/genética , Serina-Treonina Quinases TOR/fisiologia
15.
Arterioscler Thromb Vasc Biol ; 34(5): 976-84, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24651678

RESUMO

OBJECTIVE: Coronary heart disease is associated with monocytosis. Studies using animal models of monocytosis and atherosclerosis such as ApoE(-/-) mice have shown bone marrow (BM) hematopoietic stem and multipotential progenitor cell (HSPC) expansion, associated with increased cell surface expression of the common ß subunit of the granulocyte macrophage colony-stimulating factor/interleukin-3 receptor (CBS) on HSPCs. ApoE(-/-) mice also display increased granulocyte macrophage colony-stimulating factor-dependent monocyte production in the spleen. We investigated the role of the CBS in cholesterol-driven HSPC expansion, monocytosis, and atherosclerosis. APPROACH AND RESULTS: Ldlr(-/-) mice were transplanted with ApoE(-/-)Cbs(-/-) or ApoE(-/-) BM followed by Western-type diet feeding. Compared with ApoE(-/-) BM-transplanted controls, ApoE(-/-)Cbs(-/-) BM-transplanted mice had reduced BM and splenic HSPC proliferation, fewer blood monocytes and neutrophils, and reduced macrophage content and area of early atherosclerotic lesions. More advanced lesions showed diminished macrophage and collagen content; however, lesion size was unchanged, reflecting an increase in necrotic core area, associated with a marked decrease in Abcg1 expression and increased macrophage apoptosis. Compared with wild-type mice, Western-type diet-fed ApoE(-/-) mice showed increased CBS expression on granulocyte macrophage colony-stimulating factor-producing innate response activator B cells and expansion of this population. ApoE(-/-)Cbs(-/-) BM-transplanted Ldlr(-/-) mice showed a marked decrease in innate response activator B cells compared with ApoE(-/-) BM-transplanted Ldlr(-/-) controls. CONCLUSIONS: Increased levels of CBS on HSPCs and splenic innate response activator B cells lead to expansion of these populations in ApoE(-/-) BM-transplanted Ldlr(-/-) mice, contributing to monocytosis and increased lesional macrophage content. However, in more advanced lesions, the CBS also has a role in atherosclerotic plaque stabilization.


Assuntos
Doenças da Aorta/metabolismo , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Diferenciação Celular , Proliferação de Células , Subunidade beta Comum dos Receptores de Citocinas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Doenças da Aorta/genética , Doenças da Aorta/patologia , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Transplante de Medula Óssea , Subunidade beta Comum dos Receptores de Citocinas/deficiência , Subunidade beta Comum dos Receptores de Citocinas/genética , Modelos Animais de Doenças , Progressão da Doença , Células-Tronco Hematopoéticas/patologia , Imunidade Inata , Lipoproteínas/metabolismo , Macrófagos/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/patologia , Necrose , Placa Aterosclerótica , Receptores de LDL/deficiência , Receptores de LDL/genética , Transdução de Sinais , Baço/metabolismo , Baço/patologia , Fatores de Tempo
16.
Arterioscler Thromb Vasc Biol ; 34(4): 751-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24504733

RESUMO

OBJECTIVE: The ATP-binding cassette (ABC) transporter B6 (ABCB6) is highly expressed in megakaryocyte progenitors, but its role in platelet production and disease has not been elucidated. APPROACH AND RESULTS: Among various ABC transporters, ABCB6 was highly expressed in megakaryocyte progenitors, exhibiting the same pattern of expression of genes involved in heme synthesis pathway. Transplantation of Abcb6 deficient (Abcb6(-/-)) bone marrow into low density lipoprotein receptor deficient recipient mice resulted in expansion and proliferation of megakaryocyte progenitors, attributable to increased reactive oxygen species production in response to porphyrin loading. The enhanced megakaryopoiesis in Abcb6(-/-) bone marrow-transplanted mice was further illustrated by increased platelet counts, mean platelet volume, and platelet activity. Platelets from Abcb6(-/-) bone marrow-transplanted mice had higher levels of chemokine (C-C motif) ligand 5, which was associated with increased plasma chemokine (C-C motif) ligand 5 levels. There were also increased platelet-leukocyte aggregates, which resulted in leukocyte activation. Abcb6(-/-) bone marrow-transplanted mice had accelerated atherosclerosis which was associated with deposition of the chemotactic agent, chemokine (C-C motif) ligand 5 in atherosclerotic plaques, resulting in increased macrophage accumulation. CONCLUSIONS: Our findings identify a new role of ABCB6 in preventing atherosclerosis development by dampening platelet production, reactivity, and chemokine (C-C motif) ligand 5 deposition in atherosclerotic lesions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/deficiência , Aterosclerose/metabolismo , Plaquetas/metabolismo , Células Progenitoras de Megacariócitos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Transplante de Medula Óssea , Proliferação de Células , Células Cultivadas , Quimiocina CCL5/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ativação Plaquetária , Espécies Reativas de Oxigênio/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Trombopoese , Fatores de Tempo
17.
Arterioscler Thromb Vasc Biol ; 34(2): 279-84, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24311381

RESUMO

OBJECTIVE: Liver X receptor (LXR) activators decrease atherosclerosis in mice. LXR activators (1) directly upregulate genes involved in reverse cholesterol transport and (2) exert anti-inflammatory effects mediated by transrepression of nuclear factor-κB target genes. We investigated whether myeloid cell deficiency of ATP-binding cassette transporters A1 and G1 (ABCA1/G1), principal targets of LXR that promote macrophage cholesterol efflux and initiate reverse cholesterol transport, would abolish the beneficial effects of LXR activation on atherosclerosis. APPROACH AND RESULTS: LXR activator T0901317 substantially reduced inflammatory gene expression in macrophages lacking ABCA1/G1. Ldlr(-/-) mice were transplanted with Abca1(-/-)Abcg1(-/-) or wild-type bone marrow (BM) and fed a Western-type diet for 6 weeks with or without T0901317 supplementation. Abca1/g1 BM deficiency increased atherosclerotic lesion complexity and inflammatory cell infiltration into the adventitia and myocardium. T0901317 markedly decreased lesion area, complexity, and inflammatory cell infiltration in the Abca1(-/-)Abcg1(-/-) BM-transplanted mice. To investigate whether this was because of macrophage Abca1/g1 deficiency, Ldlr(-/-) mice were transplanted with LysmCreAbca1(fl/fl)Abcg1(fl/fl) or Abca1(fl/fl)Abcg1(fl/fl) BM and fed Western-type diet with or without the more specific LXR agonist GW3965 for 12 weeks. GW3965 decreased lesion size in both groups, and the decrease was more prominent in the LysmCreAbca1(fl/fl)Abcg1(fl/fl) group. CONCLUSIONS: The results suggest that anti-inflammatory effects of LXR activators are of key importance to their antiatherosclerotic effects in vivo independent of cholesterol efflux pathways mediated by macrophage ABCA1/G1. This has implications for the development of LXR activators that lack adverse effects on lipogenic genes while maintaining the ability to transrepress inflammatory genes.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/deficiência , Anti-Inflamatórios/farmacologia , Aterosclerose/prevenção & controle , Benzoatos/farmacologia , Benzilaminas/farmacologia , Hidrocarbonetos Fluorados/farmacologia , Lipoproteínas/deficiência , Macrófagos/efeitos dos fármacos , Receptores Nucleares Órfãos/agonistas , Receptores de LDL/deficiência , Sulfonamidas/farmacologia , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Transporte Biológico , Transplante de Medula Óssea , Colesterol/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Lipoproteínas/genética , Receptores X do Fígado , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/transplante , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Receptores Nucleares Órfãos/metabolismo , Receptores de LDL/genética
18.
Atherosclerosis ; 229(1): 79-85, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23684512

RESUMO

Previous studies have shown that mice with defects in cellular cholesterol efflux show hematopoietic stem cell (HSPC) and myeloid proliferation, contributing to atherogenesis. We hypothesized that the combination of hypercholesterolemia and defective cholesterol efflux would promote HSPC expansion and leukocytosis more prominently than either alone. We crossed Ldlr(-/-) with Apoa1(-/-) mice and found that compared to Ldlr(-/-) mice, Ldlr(-/-)/Apoa1(+/-) mice, with similar LDL-cholesterol levels but reduced HDL-cholesterol (HDL-C) levels, had expansion of HSPCs, monocytosis and neutrophilia. Ex vivo studies showed that HSPCs expressed high levels of Ldlr, Scarb1 (Srb1), and Lrp1 and were able to take up both native and oxidized LDL. Native LDL directly stimulated HSPC proliferation, while co-incubation with reconstituted HDL attenuated this effect. We also assessed the impact of HDL-C levels on monocytes in children with familial hypercholesterolemia (FH) (n = 49) and found that subjects with the lowest level of HDL-C, had increased monocyte counts compared to the mid and higher HDL-C levels. Overall, HDL-C was inversely correlated with the monocyte count. These data suggest that in mice, a balance of cholesterol uptake and efflux mechanisms may be one factor in driving HSPC proliferation and monocytosis. Higher monocyte counts in children with FH and low HDL-cholesterol suggest a similar pattern in humans.


Assuntos
Aterosclerose/metabolismo , HDL-Colesterol/metabolismo , Células-Tronco Hematopoéticas/citologia , Hiperlipoproteinemia Tipo II/metabolismo , Monócitos/citologia , Adolescente , Animais , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Aterosclerose/imunologia , Aterosclerose/patologia , Proliferação de Células , Criança , LDL-Colesterol/metabolismo , Feminino , Células-Tronco Hematopoéticas/metabolismo , Humanos , Hiperlipoproteinemia Tipo II/imunologia , Hiperlipoproteinemia Tipo II/patologia , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo
19.
Circ Res ; 112(11): 1456-65, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23572498

RESUMO

RATIONALE: Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. OBJECTIVE: To assess the role of macrophage cholesterol efflux pathways in atherogenesis. METHODS AND RESULTS: We developed mice with efficient deletion of the ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) in macrophages (MAC-ABC(DKO) mice) but not in hematopoietic stem or progenitor populations. MAC-ABC(DKO) bone marrow (BM) was transplanted into Ldlr(-/-) recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared with controls. On the Western-type diet, MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice had disproportionate atherosclerosis, considering they also had lower very low-density lipoprotein/low-density lipoprotein cholesterol levels than controls. ABCA1/G1-deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, Western-type diet-fed MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice displayed monocytosis and neutrophilia in the absence of hematopoietic stem and multipotential progenitor cells proliferation. Mechanistic studies revealed increased expressions of machrophage colony stimulating factor and granulocyte colony stimulating factor in splenic macrophage foam cells, driving BM monocyte and neutrophil production. CONCLUSIONS: These studies show that macrophage deficiency of ABCA1/G1 is proatherogenic likely by promoting plaque inflammation and uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/imunologia , Aterosclerose/imunologia , Lipoproteínas/genética , Lipoproteínas/imunologia , Vasculite/imunologia , Transportador 1 de Cassete de Ligação de ATP , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ração Animal , Animais , Aterosclerose/genética , Aterosclerose/patologia , Transplante de Medula Óssea , Colesterol na Dieta/metabolismo , Células Espumosas/imunologia , Células Espumosas/metabolismo , Células Espumosas/patologia , Lipoproteínas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Receptores de LDL/genética , Receptores de LDL/metabolismo , Baço/patologia , Vasculite/genética , Vasculite/patologia
20.
J Clin Invest ; 121(10): 4138-49, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21968112

RESUMO

Leukocytosis is associated with increased cardiovascular disease risk in humans and develops in hypercholesterolemic atherosclerotic animal models. Leukocytosis is associated with the proliferation of hematopoietic stem and multipotential progenitor cells (HSPCs) in mice with deficiencies of the cholesterol efflux-promoting ABC transporters ABCA1 and ABCG1 in BM cells. Here, we have determined the role of endogenous apolipoprotein-mediated cholesterol efflux pathways in these processes. In Apoe⁻/⁻ mice fed a chow or Western- type diet, monocytosis and neutrophilia developed in association with the proliferation and expansion of HSPCs in the BM. In contrast, Apoa1⁻/⁻ mice showed no monocytosis compared with controls. ApoE was found on the surface of HSPCs, in a proteoglycan-bound pool, where it acted in an ABCA1- and ABCG1-dependent fashion to decrease cell proliferation. Accordingly, competitive BM transplantation experiments showed that ApoE acted cell autonomously to control HSPC proliferation, monocytosis, neutrophilia, and monocyte accumulation in atherosclerotic lesions. Infusion of reconstituted HDL and LXR activator treatment each reduced HSPC proliferation and monocytosis in Apoe⁻/⁻ mice. These studies suggest a specific role for proteoglycanbound ApoE at the surface of HSPCs to promote cholesterol efflux via ABCA1/ABCG1 and decrease cell proliferation, monocytosis, and atherosclerosis. Although endogenous apoA-I was ineffective, pharmacologic approaches to increasing cholesterol efflux suppressed stem cell proliferative responses.


Assuntos
Apolipoproteínas E/fisiologia , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Células-Tronco Hematopoéticas/patologia , Células-Tronco Hematopoéticas/fisiologia , Monócitos/patologia , Transportador 1 de Cassete de Ligação de ATP , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apolipoproteína A-I/deficiência , Apolipoproteína A-I/genética , Apolipoproteína A-I/fisiologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Proliferação de Células , Colesterol/metabolismo , Modelos Animais de Doenças , Humanos , Leucocitose/patologia , Leucocitose/fisiopatologia , Lipoproteínas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Cardiovasculares , Proteoglicanas/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores de LDL/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...