Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 14(3): e22932, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35399422

RESUMO

Hypothyroidism is a commonly encountered clinical diagnosis, particularly in the elderly population. While management of this disorder is rather simple with thyroxine replacement, healthcare providers may occasionally encounter patient non-adherence, which may lead to life-threatening complications. In this report, we present a case of a 74-year-old veteran with a long-standing history of amiodarone-induced asymptomatic hypothyroidism, who was non-adherent to thyroxine replacement therapy and presented to the hospital after a mechanical fall. His chest X-ray showed a globular heart with an enlarged cardiac silhouette, and transthoracic echocardiography (TTE) subsequently confirmed a large pericardial effusion with tamponade physiology. Physicians should be aware of and patients should be counseled about the potentially serious consequences of untreated hypothyroidism that could be avoided with proper patient education and adherence to the therapeutic plan.

2.
Acc Chem Res ; 51(4): 940-949, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29613769

RESUMO

Molecular chaperones play a central role in protein homeostasis (a.k.a. proteostasis) by balancing protein folding, quality control, and turnover. To perform these diverse tasks, chaperones need the malleability to bind nearly any "client" protein and the fidelity to detect when it is misfolded. Remarkably, these activities are carried out by only ∼180 dedicated chaperones in humans. How do a relatively small number of chaperones maintain cellular and organismal proteostasis for an entire proteome? Furthermore, once a chaperone binds a client, how does it "decide" what to do with it? One clue comes from observations that individual chaperones engage in protein-protein interactions (PPIs)-both with each other and with their clients. These physical links coordinate multiple chaperones into organized, functional complexes and facilitate the "handoff" of clients between them. PPIs also link chaperones and their clients to other cellular pathways, such as those that mediate trafficking (e.g., cytoskeleton) and degradation (e.g., proteasome). The PPIs of the chaperone network have a wide range of affinity values (nanomolar to micromolar) and involve many distinct types of domain modules, such as J domains, zinc fingers, and tetratricopeptide repeats. Many of these motifs have the same binding surfaces on shared partners, such that members of one chaperone class often compete for the same interactions. Somehow, this collection of PPIs draws together chaperone families and creates multiprotein subnetworks that are able to make the "decisions" of protein quality control. The key to understanding chaperone-mediated proteostasis might be to understand how PPIs are regulated. This Account will discuss the efforts of our group and others to map, measure, and chemically perturb the PPIs within the molecular chaperone network. Structural biology methods, including X-ray crystallography, NMR spectroscopy, and electron microscopy, have all played important roles in visualizing the chaperone PPIs. Guided by these efforts and -omics approaches to measure PPIs, new advances in high-throughput chemical screening that are specially designed to account for the challenges of this system have emerged. Indeed, chemical biology has played a particularly important role in this effort, as molecules that either promote or inhibit specific PPIs have proven to be invaluable research probes in cells and animals. In addition, these molecules have provided leads for the potential treatment of protein misfolding diseases. One of the major products of this research field has been the identification of putative PPI drug targets within the chaperone network, which might be used to change chaperone "decisions" and rebalance proteostasis.


Assuntos
Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Mapeamento de Interação de Proteínas , Animais , Humanos , Modelos Moleculares , Ligação Proteica
3.
J Biol Chem ; 289(19): 13155-67, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24671421

RESUMO

Heat shock protein 70 (Hsp70) molecular chaperones play critical roles in protein homeostasis. In the budding yeast Saccharomyces cerevisiae, cytosolic Hsp70 interacts with up to three types of nucleotide exchange factors (NEFs) homologous to human counterparts: Sse1/Sse2 (Heat shock protein 110 (Hsp110)), Fes1 (HspBP1), and Snl1 (Bag-1). All three NEFs stimulate ADP release; however, it is unclear why multiple distinct families have been maintained throughout eukaryotic evolution. In this study we investigate NEF roles in Hsp70 cell biology using an isogenic combinatorial collection of NEF deletion mutants. Utilizing well characterized model substrates, we find that Sse1 participates in most Hsp70-mediated processes and is of particular importance in protein biogenesis and degradation, whereas Fes1 contributes to a minimal extent. Surprisingly, disaggregation and resolubilization of thermally denatured firefly luciferase occurred independently of NEF activity. Simultaneous deletion of SSE1 and FES1 resulted in constitutive activation of heat shock protein expression mediated by the transcription factor Hsf1, suggesting that these two factors are important for modulating stress response. Fes1 was found to interact in vivo preferentially with the Ssa family of cytosolic Hsp70 and not the co-translational Ssb homolog, consistent with the lack of cold sensitivity and protein biogenesis phenotypes for fes1Δ cells. No significant consequence could be attributed to deletion of the minor Hsp110 SSE2 or the Bag homolog SNL1. Together, these lines of investigation provide a comparative analysis of NEF function in yeast that implies Hsp110 is the principal NEF for cytosolic Hsp70, making it an ideal candidate for therapeutic intervention in human protein folding disorders.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Proteínas de Ligação a DNA , Deleção de Genes , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato/fisiologia , Fatores de Transcrição , Transcrição Gênica/fisiologia
4.
J Vis Exp ; (77): e50432, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23892247

RESUMO

Proteostasis, defined as the combined processes of protein folding/biogenesis, refolding/repair, and degradation, is a delicate cellular balance that must be maintained to avoid deleterious consequences (1). External or internal factors that disrupt this balance can lead to protein aggregation, toxicity and cell death. In humans this is a major contributing factor to the symptoms associated with neurodegenerative disorders such as Huntington's, Parkinson's, and Alzheimer's diseases (10). It is therefore essential that the proteins involved in maintenance of proteostasis be identified in order to develop treatments for these debilitating diseases. This article describes techniques for monitoring in vivo protein folding at near-real time resolution using the model protein firefly luciferase fused to green fluorescent protein (FFL-GFP). FFL-GFP is a unique model chimeric protein as the FFL moiety is extremely sensitive to stress-induced misfolding and aggregation, which inactivates the enzyme (12). Luciferase activity is monitored using an enzymatic assay, and the GFP moiety provides a method of visualizing soluble or aggregated FFL using automated microscopy. These coupled methods incorporate two parallel and technically independent approaches to analyze both refolding and functional reactivation of an enzyme after stress. Activity recovery can be directly correlated with kinetics of disaggregation and re-solubilization to better understand how protein quality control factors such as protein chaperones collaborate to perform these functions. In addition, gene deletions or mutations can be used to test contributions of specific proteins or protein subunits to this process. In this article we examine the contributions of the protein disaggregase Hsp104 (13), known to partner with the Hsp40/70/nucleotide exchange factor (NEF) refolding system (5), to protein refolding to validate this approach.


Assuntos
Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Luciferases de Vaga-Lume/química , Luciferases de Vaga-Lume/metabolismo , Dobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...