Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 635: 122777, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36842518

RESUMO

A synthetic and thermo-responsive polymer, poly(N-isopropylacrylamide)-co-(polylactide/2-hydroxy methacrylate)-co-(oligo (ethylene glycol)), is used to formulate a universal carrier platform for sustained drug release. The enabling carrier, denoted as TP, is prepared by dissolving the polymer in an aqueous solution at a relatively neutral pH. A wide range of therapeutic moieties can be incorporated without the need for the addition of surfactants, organic solvents, and other reagents to the carrier system. The resulting solution is flowable through fine gauge needle, allowing accurate administration of TP to the target site. After injection, TP carrier undergoes a coil to globe phase transition to form a hydrogel matrix at the site. The benign nature of the polymer carrier and its physical gelation process are essential to preserve the biological activity of the encapsulated compounds while the adhesive hydrogel nature of the matrix allows sustained elusion and controlled delivery of the incorporated therapeutics. The TP carrier system has been shown to be non-toxic and elicits a minimal inflammatory response in multiple in vitro studies. These findings suggest the suitability of TP as an enabling carrier of therapeutics for localized and sustained drug delivery. To confirm this hypothesis, the capabilities of TP to encapsulate and effectively deliver multiple therapeutics of different physicochemical characteristics was evaluated. Specifically, a broad range of compounds were tested, including ciprofloxacin HCl, tumor necrosis factor-alpha (TNF-α), transforming growth factor beta 1 (TGF-ß1), and recombinant human bone morphogenetic protein 2 (BMP2). In vitro studies confirmed that TP carrier is able to control the release of the encapsulated drugs over an extended period of time and mitigate their burst release regardless of the compounds' physiochemical properties for the majority of the loaded therapeutics. Importantly, in vitro and in vivo animal studies showed that the released drugs from the TP hydrogel matrix remained potent and bioactive, confirming the high potential of the TP polymer system as an enabling carrier.


Assuntos
Hidrogéis , Medicamentos Sintéticos , Animais , Humanos , Hidrogéis/química , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Polímeros/química
2.
Adv Healthc Mater ; 11(23): e2201714, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36148581

RESUMO

Injectable hydrogels can support the body's innate healing capability by providing a temporary matrix for host cell ingrowth and neovascularization. The clinical adoption of current injectable systems remains low due to their cumbersome preparation requirements, device malfunction, product dislodgment during administration, and uncontrolled biological responses at the treatment site. To address these challenges, a fully synthetic and ready-to-use injectable biomaterial is engineered that forms an adhesive hydrogel that remains at the administration site regardless of defect anatomy. The product elicits a negligible local inflammatory response and fully resorbs into nontoxic components with minimal impact on internal organs. Preclinical animal studies confirm that the engineered hydrogel upregulates the regeneration of both soft and hard tissues by providing a temporary matrix to support host cell ingrowth and neovascularization. In a pilot clinical trial, the engineered hydrogel is successfully administered to a socket site post tooth extraction and forms adhesive hydrogel that stabilizes blood clot and supports soft and hard tissue regeneration. Accordingly, this injectable hydrogel exhibits high therapeutic potential and can be adopted to address multiple unmet needs in different clinical settings.


Assuntos
Hidrogéis , Hidrogéis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...