RESUMO
BACKGROUND: Focal cortical dysplasia (FCD) is a malformation of cortical development that causes medical refractory seizures, and one of the main treatments may be surgical resection of the affected area of the brain. People affected by FCD may present with seizures of variable severity since childhood. Despite many medical treatments available, only surgery can offer cure. The pathophysiology of the disease is not yet understood; however, it is known that several gene alterations may play a role. The WNT/ß-catenin pathway is closely related to the control and balance of cell proliferation and differentiation in the central nervous system. The aim of this study was to explore genes related to the WNT/ß-catenin pathway in lesional and perilesional brain tissue in patients with FCD type II. METHODS: Dysplastic and perilesional tissue from the primary dysplastic lesion of patients with FCD type IIa were obtained from two patients who underwent surgical treatment. The analysis of the relative expression of genes was performed by a qRT-PCR array (super array) containing 84 genes related to the WNT pathway. RESULTS: Our results suggest the existence of molecular alteration in some genes of the WNT pathway in tissue with dysplastic lesions and of perilesional tissue. We call this tissue of normal-appearing adjacent cortex (NAAC). Of all genes analyzed, a large number of genes show similar behavior between injured, perilesional and control tissues. However, some genes have similar characteristics between the perilesional and lesional tissue and are different from the control brain tissue, presenting the perilesional tissue as a molecularly altered material. CONCLUSION: Our results suggest that the perilesional area after surgical resection of tissue with cortical dysplasia presents molecular changes that may play a role in the recurrence of seizures in these patients. The perilesional tissue should receive expanded attention beyond the somatic mutations described and associated with FCD, such as mTOR, for example, to new signaling pathways that may play a crucial role in seizure recurrence.
Assuntos
Epilepsia Resistente a Medicamentos , Displasia Cortical Focal , Humanos , Criança , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia , Via de Sinalização Wnt/genética , beta Catenina , ConvulsõesRESUMO
Lysosomes are highly dynamic organelles involved in the breakdown and recycling of macromolecules, cell cycle, cell differentiation, and cell death, among many other functions in eukaryotic cells. Recently, lysosomes have been identified as cellular hubs for the modulation of intracellular signaling pathways, such as the Wnt/beta-catenin pathway. Here we analyzed morphological and functional characteristics of lysosomes in muscle and non-muscle cells during chick myogenesis, as well as their modulation by the Wnt/beta-catenin pathway. Our results show that (i) muscle and non-muscle cells show differences in lysosomal size and its distribution, (ii) lysosomes are found in spherical structures in myoblasts and fibroblasts and tubular structures in myotubes, (iii) lysosomes are found close to the plasma membrane in fibroblasts and close to the nucleus in myoblasts and myotubes, (iv) lysosomal distribution and size are dependent on the integrity of microtubules and microfilaments in myogenic cells, (v) alterations in lysosomal function, in the expression of LAMP2, and in Wnt/beta-catenin pathway affect the distribution and size of lysosomes in myogenic cells, (vi) the effects of the knockdown of LAMP2 on myogenesis can be rescued by the activation of the Wnt/beta-catenin pathway, and (vii) the chloroquine Lys05 is a potent inhibitor of both the Wnt/beta-catenin pathway and lysosomal function. Our data highlight the involvement of the Wnt/beta-catenin pathway in the regulation of the positioning, size, and function of lysosomes during chick myogenesis.
Assuntos
Desenvolvimento Muscular , beta Catenina , beta Catenina/metabolismo , Desenvolvimento Muscular/fisiologia , Via de Sinalização Wnt , Fibras Musculares Esqueléticas/metabolismo , Citoesqueleto/metabolismo , Lisossomos/metabolismoRESUMO
PURPOSE: 5-Fluorouracil (5-FU), an anti-cancer drug, has been used for hepatoblastoma (HB) chemotherapy in children, who may have impaired ovarian follicle pool reserve with lasting effects to reproduction. Therefore, this study aimed to investigate 5-FU effects on survival, growth, and morphology of ovarian preantral follicles from C57BL6J young mice. METHODS: Experiments were carried-out both in vivo and in vitro. Mice were treated with 5-FU injection (450 mg/kg i.p) or saline and sacrificed 3 days after to obtain ovaries for histology and molecular biology. Ovaries for in vitro studies were obtained from unchallenged mice and cultured under basic culture medium (BCM) or BCM plus 5-FU (9.2, 46.1, 92.2 mM). Preantral follicles were classified according to developmental stages, and as normal or degenerated. To assess cell viability, caspase-3 immunostaining was performed. Transcriptional levels for apoptosis (Bax, Bcl2, p53, Bax/Bcl2) and Wnt pathway genes (Wnt2 and Wnt4) were also analyzed. Ultrastructural analyses were carried-out on non-cultured ovaries. In addition, ß-catenin immunofluorescence was assessed in mouse ovaries. RESULTS: The percentage of all-types normal follicles was significantly lower after 5-FU challenge. A total loss of secondary normal follicles was found in the 5-FU group. The highest 5-FU concentrations reduced the percentage of cultured normal primordial follicles. Large vacuoles were seen in granulosa cells and ooplasm of preantral follicles by electron microscopy. A significantly higher gene expression for Bax and Bax/Bcl2 ratio was seen after 5-FU treatment. A marked reduction in ß-catenin immunolabeling was seen in 5-FU-challenged preantral follicles. In the in vitro experiments, apoptotic and Wnt gene transcriptions were significantly altered. CONCLUSION: Altogether, our findings suggest that 5-FU can deleteriously affect the ovarian follicle reserve by reducing preantral follicles survival.
Assuntos
Fluoruracila/toxicidade , Folículo Ovariano/efeitos dos fármacos , Animais , Caspase 3/análise , Feminino , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Folículo Ovariano/patologia , Folículo Ovariano/ultraestruturaRESUMO
Toxoplasma gondii is the causative agent of toxoplasmosis, a parasitic disease with a wide global prevalence. The parasite forms cysts in skeletal muscle cells and neurons, although no evident association with inflammatory infiltrates has been typically found. We studied the impact of T. gondii infection on the myogenic program of mouse skeletal muscle cells (SkMC). The C2C12 murine myoblast cell line was infected with T. gondii tachyzoites (ME49 strain) for 24 h followed by myogenic differentiation induction. T. gondii infection caused a general decrease in myotube differentiation, fusion and maturation, along with decreased expression of myosin heavy chain. The expression of Myogenic Regulatory Factors Myf5, MyoD, Mrf4 and myogenin was modulated by the infection. Infected cultures presented increased proliferation rates, as assessed by Ki67 immunostaining, whereas neither host cell lysis nor apoptosis were significantly augmented in infected dishes. Cytokine Bead Array indicated that IL-6 and MCP-1 were highly increased in the medium from infected cultures, whereas TGF-ß1 was consistently decreased. Inhibition of the IL-6 receptor or supplementation with recombinant TGF-ß failed to reverse the deleterious effects caused by the infection. However, conditioned medium from infected cultures inhibited myogenesis in C2C12 cells. Activation of the Wnt/ß-catenin pathway was impaired in T. gondii-infected cultures. Our data indicate that T. gondii leads SkMCs to a pro-inflammatory phenotype, leaving cells unresponsive to ß-catenin activation, and inhibition of the myogenic differentiation program. Such deregulation may suggest muscle atrophy and molecular mechanisms similar to those involved in myositis observed in human patients.
Assuntos
Interações Hospedeiro-Patógeno , Desenvolvimento Muscular , Fatores de Regulação Miogênica/metabolismo , Toxoplasma/fisiologia , Toxoplasmose/metabolismo , Animais , Biomarcadores , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Imunofluorescência , Expressão Gênica , Genes Reporter , Camundongos , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/parasitologia , Fatores de Regulação Miogênica/genética , Toxoplasmose/parasitologia , Via de Sinalização WntRESUMO
Glioblastoma is an extremely aggressive and deadly brain tumor known for its striking cellular heterogeneity and capability to communicate with microenvironment components, such as microglia. Microglia-glioblastoma interaction contributes to an increase in tumor invasiveness, and Wnt signaling pathway is one of the main cascades related to tumor progression through changes in cell migration and invasion. However, very little is known about the role of canonical Wnt signaling during microglia-glioblastoma crosstalk. Here, we show for the first time that Wnt3a is one of the factors that regulate interactions between microglia and glioblastoma cells. Wnt3a activates the Wnt/ß-catenin signaling of both glioblastoma and microglial cells. Glioblastoma-conditioned medium not only induces nuclear translocation of microglial ß-catenin but also increases microglia viability and proliferation as well as Wnt3a, cyclin-D1, and c-myc expression. Moreover, glioblastoma-derived Wnt3a increases microglial ARG-1 and STI1 expression, followed by an upregulation of IL-10 mRNA levels, and a decrease in IL1ß gene expression. The presence of Wnt3a in microglia-glioblastoma co-cultures increases the formation of membrane nanotubes accompanied by changes in migration capability. In vivo, tumors formed from Wnt3a-stimulated glioblastoma cells presented greater microglial infiltration and more aggressive characteristics such as growth rate than untreated tumors. Thus, we propose that Wnt3a belongs to the arsenal of factors capable of stimulating the induction of M2-like phenotype on microglial cells, which contributes to the poor prognostic of glioblastoma, reinforcing that Wnt/ß-catenin pathway can be a potential therapeutic target to attenuate glioblastoma progression.
Assuntos
Microglia/metabolismo , Via de Sinalização Wnt/fisiologia , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Glioblastoma/genética , Humanos , FenótipoRESUMO
Bufadienolides are cardiotonic steroids (CTS) identified in mammals. Besides Naâº/Kâº-ATPase inhibition, they activate signal transduction via proteinâ»protein interactions. Diversity of endogenous bufadienolides and mechanisms of action may indicate the presence of functional selectivity and unique cellular outcomes. We evaluated whether the bufadienolides telocinobufagin and marinobufagin induce changes in proliferation or viability of pig kidney (LLC-PK1) cells and the mechanisms involved in these changes. In some experiments, ouabain was used as a positive control. CTS exhibited an inhibitory IC50 of 0.20 (telocinobufagin), 0.14 (ouabain), and 3.40 µM (marinobufagin) for pig kidney Naâº/Kâº-ATPase activity and concentrations that barely inhibited it were tested in LLC-PK1 cells. CTS induced rapid ERK1/2 phosphorylation, but corresponding proliferative response was observed for marinobufagin and ouabain instead of telocinobufagin. Telocinobufagin increased Bax:Bcl-2 expression ratio, sub-G0 cell cycle phase and pyknotic nuclei, indicating apoptosis. Src and MEK1/2 inhibitors blunted marinobufagin but not telocinobufagin effect, which was also not mediated by p38, JNK1/2, and PI3K. However, BIO, a GSK-3ß inhibitor, reduced proliferation and, as telocinobufagin, phosphorylated GSK-3ß at inhibitory Ser9. Combination of both drugs resulted in synergistic antiproliferative effect. Wnt reporter activity assay showed that telocinobufagin impaired Wnt/ß-catenin pathway by acting upstream to ß-catenin stabilization. Our findings support that mammalian endogenous bufadienolides may exhibit functional selectivity.
Assuntos
Bufanolídeos/farmacologia , Células LLC-PK1/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos , Via de Sinalização Wnt/efeitos dos fármacosRESUMO
Wnt/ß-catenin has been described as crucial for dorsal-ventral and antero-posterior patterning, playing multiple roles at different stages of development. Cholesterol-rich membrane microdomains (CRMMs), cholesterol- and sphingolipid-enriched domains of the plasma membrane, are known as platforms for signaling pathways. Although we have demonstrated the importance of the CRMMs for head development, how they participate in prechordal plate formation and embryo axis patterning remains an open question. Moreover, the participation of the CRMMs in the Wnt/ß-catenin signaling pathway activity in vivo is unclear, particularly during embryonic development. In this study, we demonstrated that CRMMs disruption by methyl-beta-cyclodextrin (MßCD) potentiates the activation of the Wnt/ß-catenin signaling pathway in vitro and in vivo during embryonic development, causing head defects by expanding the Wnt expression domain. Furthermore, we also found that the action of CRMMs depends on the microenvironmental context because it also works in conjunction with dkk1, when dkk1 is overexpressed. Thus, we propose CRMMs as a further mechanism of prechordal plate protection against the Wnt signals secreted by posterolateral cells, complementing the action of secreted antagonists.
Assuntos
Padronização Corporal/genética , Microdomínios da Membrana/genética , Proteínas Wnt/genética , beta Catenina/genética , Animais , Colesterol/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento , beta Catenina/metabolismo , beta-Ciclodextrinas/farmacologiaRESUMO
Connective tissue growth factor (CTGF)/CCN family member 2 (CCN2) is a CCN family member of matricellular signaling modulators. It has been shown that CCN2/CTGF mediates cell adhesion, aggregation and migration in a large variety of cell types, including vascular endothelial cells, fibroblasts, epithelial cells, aortic smooth muscle and also pluripotent stem cells. Others matricellular proteins are capable of interacting with CCN2/CTGF to mediate its function. Cell migration is a key feature for tumor cell invasion and metastasis. CCN2/CTGF seems to be a prognostic marker for cancer. In addition, here we intend to discuss recent discoveries and a new strategy to develop therapies against CCN2/CTGF, in order to treat cancer metastasis.
RESUMO
Connective-tissue growth factor (CTGF/CCN2) is a matricellular-secreted protein involved in complex processes such as wound healing, angiogenesis, fibrosis and metastasis, in the regulation of cell proliferation, migration and extracellular matrix remodeling. Glioblastoma (GBM) is the major malignant primary brain tumor and its adaptation to the central nervous system microenvironment requires the production and remodeling of the extracellular matrix. Previously, we published an in vitro approach to test if neurons can influence the expression of the GBM extracellular matrix. We demonstrated that neurons remodeled glioma cell laminin. The present study shows that neurons are also able to modulate CTGF expression in GBM. CTGF immnoreactivity and mRNA levels in GBM cells are dramatically decreased when these cells are co-cultured with neonatal neurons. As proof of particular neuron effects, neonatal neurons co-cultured onto GBM cells also inhibit the reporter luciferase activity under control of the CTGF promoter, suggesting inhibition at the transcription level. This inhibition seems to be contact-mediated, since conditioned media from embryonic or neonatal neurons do not affect CTGF expression in GBM cells. Furthermore, the inhibition of CTGF expression in GBM/neuronal co-cultures seems to affect the two main signaling pathways related to CTGF. We observed inhibition of TGFß luciferase reporter assay; however phopho-SMAD2 levels did not change in these co-cultures. In addition levels of phospho-p44/42 MAPK were decreased in co-cultured GBM cells. Finally, in transwell migration assay, CTGF siRNA transfected GBM cells or GBM cells co-cultured with neurons showed a decrease in the migration rate compared to controls. Previous data regarding laminin and these results demonstrating that CTGF is down-regulated in GBM cells co-cultured with neonatal neurons points out an interesting view in the understanding of the tumor and cerebral microenvironment interactions and could open up new strategies as well as suggest a new target in GBM control.
Assuntos
Comunicação Celular , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Glioblastoma/metabolismo , Neurônios/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Técnicas de Cocultura , Fator de Crescimento do Tecido Conjuntivo/genética , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Cultura Primária de Células , Regiões Promotoras Genéticas , Ratos , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Ativação Transcricional , Fator de Crescimento Transformador beta/metabolismoRESUMO
Cigarette smoke has been associated with poor healing in several studies, but the precise mechanisms involving this impairment are still not elucidated. The aim of this work was to investigate cigarette smoke exposure effects on initial phases of cutaneous healing in mice, focusing mainly on gene expression of two molecules involved in wound repair (Ccn2/Ctgf and Tgfb1) and to study if these effects are strain dependent. Mice were exposed to the smoke of nine cigarettes per day, three times per day, for ten days. In the eleventh day an excisional wound was made. The control group was sham-exposed. The cigarette smoke exposure protocol was performed until euthanasia, seven days after wounding. Wound contraction was evaluated. Sections were stained with hematoxylin-eosin, Sirius red, and toluidine blue, and also immunostained for alpha-smooth muscle actin. Gene expression of Ccn2/Ctgf and Tgfb1 was evaluated by semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR). Smoke-exposed animals presented delay in wound contraction; fibroblastic, inflammatory, and mast cell recruitment; re-epithelialization; myofibroblastic differentiation; and Ccn2/Ctgf and Tgfb1 gene expression. Those alterations were strain dependent. This work confirmed the deleterious effects of cigarette smoke exposure on mouse cutaneous healing depending on mouse strain and links these effects to an overexpression of Ccn2/Ctgf.
Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Nicotiana/toxicidade , Fumaça/efeitos adversos , Cicatrização/genética , Animais , Fator de Crescimento do Tecido Conjuntivo/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pele/química , Especificidade da EspécieRESUMO
Myogenic differentiation is a multistep process that begins with the commitment of mononucleated precursors that withdraw from cell cycle. These myoblasts elongate while aligning to each other, guided by the recognition between their membranes. This step is followed by cell fusion and the formation of long and striated multinucleated myotubes. We have recently shown that cholesterol depletion by methyl-beta-cyclodextrin (MbetaCD) induces myogenic differentiation by enhancing myoblast recognition and fusion. Here, we further studied the signaling pathways responsible for early steps of myogenesis. As it is known that Wnt plays a role in muscle differentiation, we used the chemical MbetaCD to deplete membrane cholesterol and investigate the involvement of the Wnt/beta-catenin pathway during myogenesis. We show that cholesterol depletion promoted a significant increase in expression of beta-catenin, its nuclear translocation and activation of the Wnt pathway. Moreover, we show that the activation of the Wnt pathway after cholesterol depletion can be inhibited by the soluble protein Frzb-1. Our data suggest that membrane cholesterol is involved in Wnt/beta-catenin signaling in the early steps of myogenic differentiation.
Assuntos
Colesterol/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Diferenciação Celular , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Embrião de Galinha/metabolismo , Receptores Frizzled/metabolismo , Humanos , Modelos Biológicos , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Transfecção , Proteínas Wnt/antagonistas & inibidores , beta Catenina/antagonistas & inibidores , beta-Ciclodextrinas/farmacologiaRESUMO
The harmonious development of the central nervous system depends on the interactions of the neuronal and glial cells. Extracellular matrix elements play important roles in these interactions, especially laminin produced by astrocytes, which has been shown to be a good substrate for neuron growth and axonal guidance. Glioblastomas are the most common subtypes of primary brain tumors and may be astrocytes in origin. As normal laminin-producing glial cells are the preferential substrate for neurons, and glial tumors have been shown to produce laminin, we questioned whether glioblastoma retained the same normal glial-neuron interactive properties with respect to neuronal growth and differentiation. Then, rat neurons were co-cultured onto rat normal astrocytes or onto three human glioblastoma cell lines obtained from neurosurgery. The co-culture confirmed that human glioblastoma cells as well as astrocytes maintained the ability to support neuritogenesis, but non-neural normal or tumoral cells failed to do so. However, glioblastoma cells did not distinguish embryonic from post-natal neurons in relation to neurite pattern in the co-cultures, as normal astrocytes did. Further, the laminin organization on both normal and tumoral glial cells was altered from a filamentous arrangement to a mixed punctuate/filamentous pattern when in co-culture with neurons. Together, these results suggest that glioblastoma cells could identify neuronal cells as partners, to support their growth and induce complex neurites, but they lost the normal glia property to distinguish neuronal age. In addition, our results show for the first time that neurons modulate the organization of astrocytes and glioblastoma laminin on the extracellular matrix.