Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 30(11): 1735-1745, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857821

RESUMO

Leucine Rich Repeat Kinase 1 and 2 (LRRK1 and LRRK2) are homologs in the ROCO family of proteins in humans. Despite their shared domain architecture and involvement in intracellular trafficking, their disease associations are strikingly different: LRRK2 is involved in familial Parkinson's disease while LRRK1 is linked to bone diseases. Furthermore, Parkinson's disease-linked mutations in LRRK2 are typically autosomal dominant gain-of-function while those in LRRK1 are autosomal recessive loss-of-function. Here, to understand these differences, we solved cryo-EM structures of LRRK1 in its monomeric and dimeric forms. Both differ from the corresponding LRRK2 structures. Unlike LRRK2, which is sterically autoinhibited as a monomer, LRRK1 is sterically autoinhibited in a dimer-dependent manner. LRRK1 has an additional level of autoinhibition that prevents activation of the kinase and is absent in LRRK2. Finally, we place the structural signatures of LRRK1 and LRRK2 in the context of the evolution of the LRRK family of proteins.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Proteínas , Mutação , Proteínas Serina-Treonina Quinases
2.
J Cell Biol ; 219(4)2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32328629

RESUMO

The steady-state morphology of the mitochondrial network is maintained by a balance of constitutive fission and fusion reactions. Disruption of this steady-state morphology results in either a fragmented or elongated network, both of which are associated with altered metabolic states and disease. How the processes of fission and fusion are balanced by the cell is unclear. Here we show that mitochondrial fission and fusion are spatially coordinated at ER membrane contact sites (MCSs). Multiple measures indicate that the mitochondrial fusion machinery, Mitofusins, accumulate at ER MCSs where fusion occurs. Furthermore, fission and fusion machineries colocalize to form hotspots for membrane dynamics at ER MCSs that can persist through sequential events. Because these hotspots can undergo fission and fusion, they have the potential to quickly respond to metabolic cues. Indeed, we discover that ER MCSs define the interface between polarized and depolarized segments of mitochondria and can rescue the membrane potential of damaged mitochondria by ER-associated fusion.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Humanos , Células Tumorais Cultivadas
4.
Elife ; 52016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27602576

RESUMO

Stress granules are non-membrane bound RNA-protein (RNP) assemblies that form when translation initiation is limited and contain a biphasic structure with stable core structures surrounded by a less concentrated shell. The order of assembly and disassembly of these two structures remains unknown. Time course analysis of granule assembly suggests that core formation is an early event in granule assembly. Stress granule disassembly is also a stepwise process with shell dissipation followed by core clearance. Perturbations that alter liquid-liquid phase separations (LLPS) driven by intrinsically disordered protein regions (IDR) of RNA binding proteins in vitro have the opposite effect on stress granule assembly in vivo. Taken together, these observations argue that stress granules assemble through a multistep process initiated by stable assembly of untranslated mRNPs into core structures, which could provide sufficient high local concentrations to allow for a localized LLPS driven by IDRs on RNA binding proteins.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , RNA Mensageiro/genética , Ribonucleoproteínas/genética , Saccharomyces cerevisiae/genética , Arsenitos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cicloeximida/farmacologia , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/ultraestrutura , Digitonina/farmacologia , Glicóis/farmacologia , Células HeLa , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Compostos de Sódio/farmacologia , Estresse Fisiológico , Fatores de Tempo
5.
J Virol ; 90(5): 2503-13, 2015 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-26676778

RESUMO

UNLABELLED: Lytic infection by herpes simplex virus 1 (HSV-1) triggers a change in many host cell programs as the virus strives to express its own genes and replicate. Part of this process is repression of host cell transcription by RNA polymerase II (Pol II), which also transcribes the viral genome. Here, we describe a global characterization of Pol II occupancy on the viral and host genomes in response to HSV-1 infection using chromatin immunoprecipitation followed by deep sequencing (ChIP-seq). The data reveal near-complete loss of Pol II occupancy throughout host cell mRNA genes, in both their bodies and promoter-proximal regions. Increases in Pol II occupancy of host cell genes, which would be consistent with robust transcriptional activation, were not observed. HSV-1 infection induced a more potent and widespread repression of Pol II occupancy than did heat shock, another cellular stress that widely represses transcription. Concomitant with the loss of host genome Pol II occupancy, we observed Pol II covering the HSV-1 genome, reflecting a high level of viral gene transcription. Interestingly, the positions of the peaks of Pol II occupancy at HSV-1 and host cell promoters were different. IMPORTANCE: We investigated the effect of herpes simplex virus 1 (HSV-1) infection on transcription of host cell and viral genes by RNA polymerase II (Pol II). The approach we used was to determine how levels of genome-bound Pol II changed after HSV-1 infection. We found that HSV-1 caused a profound loss of Pol II occupancy across the host cell genome. Increases in Pol II occupancy were not observed, showing that no host genes were activated after infection. In contrast, Pol II occupied the entire HSV-1 genome. Moreover, the pattern of Pol II at HSV-1 genes differed from that on host cell genes, suggesting a unique mode of viral gene transcription. These studies provide new insight into how HSV-1 causes changes in the cellular program of gene expression and how the virus coopts host Pol II for its own use.


Assuntos
DNA/metabolismo , Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno , RNA Polimerase II/metabolismo , Replicação Viral , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Herpesvirus Humano 1/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...