Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 416: 125846, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492799

RESUMO

The incorporation of different percentages of Fe2+ into copper benzene-1,3,5-tricarboxylate (CuBTC) was successfully carried out at room-temperature synthesis with water as the only solvent. The XRD and XPS analysis shows that the Fe2+ were substituted into the paddlewheel structure. The incorporation of 18% Fe2+ into CuBTC can increase the surface area and porosity of the framework. The BET surface area of Cu82Fe18BTC (1240 m2/g) was significantly higher than CuBTC (708 m2/g). Further increase in the Fe2+ percentage will reduce the surface area of the compound. The presence of Fe2+ in the framework successfully disturbs the pore formation and widens the pore size on the surface of these compounds. This as well as the pHpzc, which is related to the surface acidity of the resulting bimetallic organic framework (BMOF), play an important role in the adsorption process. Cu53Fe47BTC with an adsorption capacity of 94.42 mg/g shows approximately 6 times greater adsorption capacity against MB compared to CuBTC. This shows that by utilizing a different ratio of Cu and a second metal, it is possible to effectively design the surface morphology of BMOF for specific applications.

2.
J Hazard Mater ; 406: 124779, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33338763

RESUMO

Zinc oxide (ZnO) photocatalysts were successfully synthesized via chemical and green, environmentally-benign methods. The work highlights the valorization of banana peel (BP) waste extract as the reducing and capping agents to produce pure, low temperature, highly crystalline, and effective ZnO nanoparticles with superior photocatalytic activities for the removal of hazardous Basic Blue 9 (BB9), crystal violet (CV), and cresol red (CR) dyes in comparison to chemically synthesized ZnO. Their formation and morphologies were verified by various optical spectroscopic and electron microscopic techniques. XRD results revealed that the biosynthesized ZnO exhibited 15.3 nm crystallite size when determined by Scherrer equation, which was smaller than the chemically synthesized ZnO. The FTIR spectra confirmed the presence of biomolecules in the green-mediated catalyst. EDX and XPS analyses verified the purity and chemical composition of ZnO. Nitrogen sorption analysis affirmed the high surface area of bio-inspired ZnO. Maximum removal efficiencies were achieved with 30 mg green ZnO catalyst, 2.0 × 10-5 M BB9 solution, alkaline pH 12, and irradiation time 90 min. Green-mediated ZnO showed superior photodegradation efficiency and reusability than chemically synthesized ZnO. Therefore, this economical, environment-friendly photocatalyst is applicable for the removal of organic contaminants in wastewater treatment under visible light irradiation.


Assuntos
Musa , Nanopartículas , Purificação da Água , Óxido de Zinco , Extratos Vegetais , Temperatura
3.
RSC Adv ; 9(66): 38760-38771, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35540239

RESUMO

This study investigated the physicochemical and catalytic properties of mesoporous magnesium silicate catalysts prepared at various Mg/CTAB ratios (0.25, 0.50, 0.75 and 1.00). The XPS analysis detected a mixture of enstatite and magnesium carbonate species when the Mg/CTAB ratio was 0.25, and 0.50. A mixture of forsterite and magnesium carbonate species were detected when the Mg/CTAB ratio was 0.75 whereas for the Mg/CTAB ratio of 1.00, enstatite and magnesium metasilicate species were detected. A catalyst with the Mg/CTAB ratio of 1.00 demonstrated the highest catalytic activity in the oxidation of styrene. The styrene conversion rate was 59.0%, with 69.2% styrene oxide (StO) selectivity. The H2O2 molecules were activated regio-specifically by the magnesium species to prevent rapid self-decomposition while promoting selective interaction with styrene. All the parameters that influence the styrene conversion and product selectivity were evaluated using analysis of variance (ANOVA) with Tukey's test. The ANOVA analysis showed that the reaction time (h), Mg/CTAB ratio, styrene/H2O2 ratio, catalyst loading (mg) and temperature (°C) affect styrene conversion and product selectivity (StO) significantly (p < 0.05). The oxidation of styrene was well fitted to the pseudo-first-order model. The activation energy, E a of the catalysed styrene epoxidation reaction was calculated to be 27.7 kJmol-1. The catalyst can be reused several times without any significant loss in its activity and selectivity. The results from this study will be useful in designing and developing low cost, high activity catalysts from alkaline earth metals.

4.
J Nanosci Nanotechnol ; 13(7): 5034-43, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23901527

RESUMO

A detailed study on the surface properties of oleic acid-stabilized PtNi nanoparticles supported on silica is reported. The oleic acid-stabilized PtNi nanoparticles were synthesized using NaBH4 as the reducing agent at various temperatures and oleic acid concentrations, prior to incorporation onto the silica support. X-ray diffraction studies of the unsupported oleic acid-stabilized PtNi particles revealed that the PtNi existed as alloys. Upon incorporation onto silica support, surface properties of the catalysts were investigated using H2-temperature reduction (H2-TPR), H2-temperature desorption (H2-TPD) and H2-chemisorption techniques. It was found that for the bimetallic catalysts, no oxides or very little oxidation occurred. Furthermore, these catalysts exhibited both Pt and Ni active sites on its surface though the availability of Ni active sites was dominant. A comparison of the surface properties of these materials with those prepared without oleic acid in our previous work [N. H. H. Abu Bakar et al., J. Catal. 265, 63 (2009)] and how they affect the hydrogenation of benzene is also discussed.


Assuntos
Nanopartículas Metálicas/química , Níquel/química , Ácido Oleico/química , Platina/química , Ligas/química , Catálise , Excipientes/química , Teste de Materiais , Oxirredução , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...