Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36770169

RESUMO

As the industry of olive oil continues to grow, the management of olive mill wastewater (OMW) by-products has become an area of great interest. While many strategies for processing OMW have been established, more studies are still required to find an effective adsorbent for total phenolic content uptake. Here, we present a composite of a Cu 1,4-benzene dicarboxylate metal-organic framework (Cu (BDC) MOF) and granular activated carbon (GAC) as an adsorbent for total phenolic content removal from OMW. Experimental results demonstrated that the maximum adsorption capacity was 20 mg/g of total phenolic content (TPC) after 4 h. using 2% wt/wt of GAC/Cu (BDC) MOF composite to OMW at optimum conditions (pH of 4.0 and 25 °C). The adsorption of phenolic content onto the GAC/Cu (BDC) MOF composite was described by the Freundlich adsorption and pseudo-second-order reaction. The adsorption reaction was found to be spontaneous and endothermic at 298 K where ΔS° and ΔH° were found to be 0.105 KJ/mol and 25.7 kJ/mol, respectively. While ΔGº value was -5.74 (kJ/mol). The results of this study provide a potential solution for the local and worldwide olive oil industry.

2.
Polymers (Basel) ; 14(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298030

RESUMO

Many recent studies focus on the pulmonary delivery of vaccines as it is needle-free, safe, and effective. Inhaled vaccines enhance systemic and mucosal immunization but still faces many limitations that can be resolved using polymeric nanoparticles (PNPs). This review focuses on the use of properties of PNPs, specifically chitosan and PLGA to be used in the delivery of vaccines by inhalation. It also aims to highlight that PNPs have adjuvant properties by themselves that induce cellular and humeral immunogenicity. Further, different factors influence the behavior of PNP in vivo such as size, morphology, and charge are discussed. Finally, some of the primary challenges facing PNPs are reviewed including formulation instability, reproducibility, device-related factors, patient-related factors, and industrial-level scale-up. Herein, the most important variables of PNPs that shall be defined in any PNPs to be used for pulmonary delivery are defined. Further, this study focuses on the most popular polymers used for this purpose.

3.
Polymers (Basel) ; 14(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35160447

RESUMO

In this study, polymer membrane(s) impregnated with carbon nanotubes (CNTs) were developed, characterized and evaluated for removing phenolic compounds from olive mill wastewater; thus, protecting the environment and public health. Polyethersulfone/functionalized, multi-walled carbon nanotube (PES/fCNTs) membranes were synthesized via the phase inversion method using PES and acid-treated CNTs. The prepared membranes were then characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and contact angle. Results obtained from this study indicate a more hydrophilic surface for the prepared PES/fCNTs membranes, with a higher pure water flux compared to the polyethersulfone (PES) membranes. In addition, the amount of fCNTs in the membranes was found to be the most significant factor affecting the morphology and water flux of the membranes. The PES/fCNTs membranes at 1 bar with 0 wt.% and 1 wt.% of CNTs showed water flux of 37.8 and 69.71 kg/h.m2, respectively. In addition, PES/fCNTs membranes with 0.5 wt.% fCNTs showed the highest total phenol content removal of 74%.

4.
Polymers (Basel) ; 13(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34641266

RESUMO

This paper studied the photocatalytic degradation of methylene blue (MB) using polymeric membrane impregnated with ZnO nanostructures under UV-light and sunlight irradiation. ZnO nanoparticles and ZnO nanowires were prepared using the hydrothermal technique. Cellulose acetate polymeric membranes were fabricated by the phase inversion method using dimethylformamide (DMF) as a solvent and ZnO nanostructures. The structural properties of the nanostructures and the membranes were investigated using XRD, SEM, FTIR, and TGA measurements. The membranes were tested for photocatalytic degradation of MB using a UV lamp and a sunlight simulator. The photocatalytic results under sunlight irradiation in the presence of cellulose acetate impregnated with ZnO nanoparticles (CA-ZnO-NP) showed a more rapid degradation of MB (about 75%) compared to the results obtained under UV-light irradiation degradation (about 30%). The results show that CA-ZnO-NP possesses the photocatalytic ability to degrade MB efficiently at different levels under UV-light and sunlight irradiation. Modified membranes with ZnO nanoparticles and ZnO nanowires were found to be chemically stable, recyclable, and reproducible. The addition of ZnO nanostructure to the cellulose membranes generally enhanced their photocatalytic activity toward MB, making these potential membranes candidates for removing organic pollutants from aqueous solutions.

5.
Sci Rep ; 10(1): 11712, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678155

RESUMO

The removal efficiencies of metals commonly used to model the fate and transport of aqueous uranium and radioactive its daughter products, were observed on activated carbons impregnated with different benzotriazole derivatives. Acidic solutions containing U(VI), Sr(II), Eu(III), and Ce(III) were used to determine the immobilization potential of carboxybenzotriazole (CBT) and methylbenzotriazole (MeBT), where these derivatives were sorbed to different types of granular activated carbon (GAC). This sorption behavior can be predicted by Redlich-Peterson model. Flow-through column tests showed that the immobilization of uranium and some of its daughter products, significantly improves in response to oxidized GACs saturated with carboxybenzotrzole (CBT), which reached a maximum elimination for U(VI) at 260 BV, Eu(III) at 114 BV, Ce(III) at 126 BV, and Sr(II) at 100. MeBT significantly desorbed from GAC under acidic conditions. Trace amounts of CBT were observed in some column effluents, but this did not appear to alter the effectiveness of metal removal, regardless of the model radionuclide studied. These results suggest that enhanced immobilization of selected metals on GAC, can be achieved by impregnating oxidized activated carbon with carboxylated benzotriazoles, and that metal removal efficiency on this media, is related to their valence and ionic radius in acidic environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...