Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 63(8): 2046-2055, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38568646

RESUMO

In this study, an uncooled 2D nanohole array PtSi/p-Si Schottky mid-infrared (MIR) photodetector, which is essential for on-chip Si-based low-barrier MIR detectors, is presented. Room temperature operation introduces susceptibility to thermal noise and can impact stability. Through modulation frequency and reverse bias optimization, the stability improved by 7 times at 170 Hz and -3.5V, respectively. The effective light detection and stability were confirmed through ON/OFF response measurements over a longer time. The wavelength-dependent responsivity, measured with a tunable MIR laser, confirmed the responsiveness of the device in the MIR region of 2.5 µm to 4.0 µm, with a maximum specific detectivity (D*) of 2.0×103 c m H z 1/2 W -1 at 3.0 µm; this result shows its potential applicability for noninvasive human lipid monitoring. Overall, this study focuses on the crucial role of signal analysis optimization in enhancing the performance of MIR photodetectors at room temperature.

2.
Nanomaterials (Basel) ; 12(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269341

RESUMO

Diamond is one of the fascinating films appropriate for optoelectronic applications due to its wide bandgap (5.45 eV), high thermal conductivity (3320 W m-1·K-1), and strong chemical stability. In this report, we synthesized a type of diamond film called nanocrystalline diamond (NCD) by employing a physical vapor deposition method. The synthesis process was performed in different ratios of nitrogen and hydrogen mixed gas atmospheres to form nitrogen-doped (n-type) NCD films. A high-resolution scanning electron microscope confirmed the nature of the deposited films to contain diamond nanograins embedded into the amorphous carbon matrix. Sensitive spectroscopic investigations, including X-ray photoemission (XPS) and near-edge X-ray absorption fine structure (NEXAFS), were performed using a synchrotron beam. XPS spectra indicated that the nitrogen content in the film increased with the inflow ratio of nitrogen and hydrogen gas (IN/H). NEXAFS spectra revealed that the σ*C-C peak weakened, accompanied by a π*C=N peak strengthened with nitrogen doping. This structural modification after nitrogen doping was found to generate unpaired electrons with the formation of C-N and C=N bonding in grain boundaries (GBs). The measured electrical conductivity increased with nitrogen content, which confirms the suggestion of structural investigations that nitrogen-doping generated free electrons at the GBs of the NCD films.

3.
ACS Appl Mater Interfaces ; 12(51): 57619-57626, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33296163

RESUMO

A laser-induced doping method was employed to incorporate phosphorus into an insulating monocrystalline diamond at ambient temperature and pressure conditions. Pulsed laser beams with nanosecond duration (20 ns) were irradiated on the diamond substrate immersed in a phosphoric acid liquid, in turns, and a thin conductive layer was formed on its surface. Phosphorus incorporation in the depth range of 40-50 nm below the irradiated surface was confirmed by secondary ion mass spectroscopy (SIMS). Electrically, the irradiated areas exhibited ohmic contacts even with tungsten prober heads at room temperature, where the electrical resistivity of irradiated areas was greatly decreased compared to the original surface. The temperature dependence of the electrical conductivity implies that the surface layer is semiconducting with activation energies ranging between 0.2 eV and 54 meV depending on irradiation conditions. Since after laser treatment no carbon or graphitic phases other than diamond is found (the D and G Raman peaks are barely observed), the incorporation of phosphorus is the main origin of the enhanced conductivity. It was demonstrated that the proposed technique is applicable to diamond as a new ex situ doping method for introducing impurities into a solid in a precise and well-controlled manner, especially with electronic technology targeting of smaller devices and shallower junctions.

4.
J Nanosci Nanotechnol ; 20(8): 4884-4891, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32126670

RESUMO

Coaxial arc plasma deposition (CAPD) was employed to manufacture n-type silicon/boron-doped p-type ultrananocrystalline diamond heterojunctions. Measurement and analysis of their dark current density-voltage curve were carried out at room temperature in order to calculate the requisite junction parameters using the Cheung and Norde approaches. For the calculation based on the Cheung approach, the series resistance (Rs), ideality factor (n) and barrier height (Φb) were 4.58 kΩ, 2.82 and 0.75 eV, respectively. The values of Rs and Φb were in agreement with those calculated using the Norde approach. Their characteristics for alternative current impedance at different frequency values were measured and analyzed as a function of the voltage (V) values ranging from 0 V to 0.5 V. Appearance of the real (Z') and imaginary (Z″) characteristics for all V values presented single semicircles. The centers of the semicircular curves were below the Z' axis and the diameter of the semicircles decreased with increments of the V value. The proper equivalent electrical circuit model for the manufactured heterojunction behavior was comprised of Rs combined with the parallel circuit of resistance and constant phase element.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...