Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Assoc Med Bras (1992) ; 67(12): 1771-1778, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34909948

RESUMO

OBJECTIVE: Crude oil extracts, components of extracts, and ethanolic extracts of Inula graveolens possess various pharmacological activities on various cancer cells including antioxidative and antiproliferative effects. Aqueous extract of this species has not been investigated on the liquid malignancies and solid tumors with a high incidence of treatment refractoriness and poor survival outcomes such as glioblastoma and leukemia. Hence, the present study aimed to evaluate the cytotoxic efficiency of I. graveolens aqueous extracts on human glioblastoma multiforme and chronic myelogenous leukemia cell lines in comparison to non-cancerous primary rat cerebral cortex and human peripheral blood mononuclear cells. METHODS: The cells were treated with the extracts of I. graveolens (125-1000 µg/mL) for 48 h, the cellular viability was identified using 3'-(4,5dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, and lactate dehydrogenase release was measured to determine the cytotoxic potential. Total oxidant status and apurinic/apyrimidinic endodeoxyribonuclease 1 assays were used to determine the oxidative status of cells and DNA damage, respectively. RESULTS: I. graveolens showed selective cytotoxicity toward human glioblastoma multiforme and chronic myelogenous leukemia cell lines and exhibited a higher antiproliferative effect against cancer cells in comparison to non-cancerous cells. Moreover, it significantly reduced the apurinic/apyrimidinic endodeoxyribonuclease 1 levels on both cancer cell lines as compared with their control cells without changing the levels of an oxidative stress marker. CONCLUSION: The extracts of I. graveolens have anti-cancer potential on human glioblastoma multiforme and chronic myelogenous leukemia cell lines without causing oxidative stress.


Assuntos
Glioblastoma , Inula , Leucemia , Animais , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Leucócitos Mononucleares , Extratos Vegetais/farmacologia , Ratos
2.
Eurasian J Med ; 52(1): 61-66, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32158317

RESUMO

OBJECTIVE: We conducted this study to explore the possible protective effect of 2-aminoethoxydiphenyl borate (2-APB) on experimentally induced optic nerve injury in an acute ischemia-reperfusion (AIR) model. MATERIALS AND METHODS: A total of 30 Wistar albino rats were randomly divided into sham, AIR, and AIR+treatment (AIR10) groups. In the sham group, AIR model was not created. In the AIR group, AIR model was created without the administration of drug. In the AIR10 group, 2-APB was administered 10 min before reperfusion. RESULTS: Tissue samples were subjected to histological, immunohistochemical, and electron microscopic procedures. Histopathological examination revealed intense hypertrophic cells, more glial cells, capillary dilatation, and intense demyelination areas in the AIR group compared to those in the sham and AIR10 groups. Immunohistochemical staining demonstrated an increase in Orai1 and STIM1 immunoreactivity in the AIR group but less intense staining in the AIR10 group. Electron microscopy revealed injury in optic nerve axons in the AIR group, whereas this type of injury occurred to a lesser extent in the AIR10 group. CONCLUSION: In rats, store-operated Ca2+ entry in the cell had an essential role in optic nerve ischemia-reperfusion injury, and 2-ABP may have a protective effect on optic nerve injury caused due to AIR.

3.
J Food Biochem ; 44(3): e13155, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31960484

RESUMO

We aimed to determine the possible effects of the antioxidant agent (1 â†’ 3)-ß-D-glucan on bortezomib-induced rat testis damage. We used five groups of rats; control, (1 â†’ 3)-ß-D-glucan (75 mg/kg), bortezomib group, bortezomib + (1 â†’ 3)-ß-D-glucan groups (injection of (1 â†’ 3)-ß-D-glucan after bortezomib and sacrificed at 48th or 72nd h). The effects of these substances were assessed by measuring the levels of the antioxidant enzymes and LPO, and by performing immunohistochemical analysis with NF-κB. The histology of testis was evaluated using aniline blue staining. (1 â†’ 3)-ß-D-glucan leads to significant reductions in the levels of antioxidant enzymes and increased levels of LPO in testes. Moreover, it increased the NF-κB immunopositivity significantly in testis, especially in Bortezomib + (1 â†’ 3)-ß-D-glucan group at 48th h. The histological changes were observed in the bortezomib and/or (1 â†’ 3)-ß-D-glucan groups. Our results demonstrated that testis damage caused by the treatment with bortezomib was not eliminated by (1 â†’ 3)-ß-D-glucan and shockingly it increased the damage. PRACTICAL APPLICATIONS: The testis damage caused by the treatment with bortezomib was not eliminated by (1 â†’ 3)-ß-D-glucan and as a result, ß-1,3-(D)-glucan enhanced the toxicity by leading a decrease in the levels of GSH, SOD, and CAT, thus caused an elevation in the immunoreactivity of NF-κB and altered the histopathological changes by enhancing the toxic effects of bortezomib. The findings of the previous studies about the antioxidative activity of (1 â†’ 3)-ß-D-glucan are controversial. So, it is necessary to consider the cytotoxicity of (1 â†’ 3)-ß-D-glucan in testis tissue. Thus, more studies on testis tissue are necessary to confirm that (1 â†’ 3)-ß-D-glucan is safe as an antioxidant.


Assuntos
Estresse Oxidativo , Testículo , Animais , Antioxidantes/farmacologia , Bortezomib/toxicidade , Glucanos , Masculino , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...