Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 189: 114748, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763501

RESUMO

Adverse pregnancy outcomes have been associated with the presence of glyphosate (G) in umbilical cord, serum, and urine samples from pregnant women. Our aim was to study the effect of G on blastocyst implantation using an in vitro mouse model, and the migration and acquisition of endothelial phenotype of the human trophoblastic HTR8/SVneo (H8) cells. In mouse blastocysts, no differences in attachment time and implantation outgrowth area were observed after G exposure. H8 cell migration was stimulated by 0.625 µM G without cytotoxicity. After 6 h, the mRNA expression of vascular endothelial growth factor (VEGF) and C-C motif chemokine ligand 2 (CCL2) was upregulated in H8 cells exposed to 1.25 µM G when compared vehicle-treated cells (p ≤ 0.05). No differences were observed in interleukin 11, VEGF receptor 1, and coagulation factor II thrombin receptor in H8 cells exposed to different concentrations of G for 6 h compared to the vehicle. Interestingly, exposure to G did not alter angiogenesis as measured by a tube formation assay. Taken all together, these results suggest that G exposure may contribute as a risk factor during pregnancy, due to its ability to alter trophoblast migration and gene expression.


Assuntos
Blastocisto , Movimento Celular , Implantação do Embrião , Glicina , Glifosato , Trofoblastos , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Movimento Celular/efeitos dos fármacos , Humanos , Animais , Feminino , Camundongos , Glicina/análogos & derivados , Glicina/toxicidade , Glicina/farmacologia , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Implantação do Embrião/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Linhagem Celular , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Gravidez , Herbicidas/toxicidade , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Angiogênese
2.
Environ Pollut ; 349: 123840, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38537797

RESUMO

Benzophenone-3 (BP3) is a common ingredient in personal care products (PCPs) due to its well-established effectiveness in absorbing UV radiation. Sunscreen products are among the most widely used PCPs-containing BP3 applied to the skin, resulting in significant human exposure to BP3 primarily through a dermal application. In the present work, we have tested the action of three environmentally relevant concentrations of BP3 (2, 20 and 200 µg/L) on an in vitro model of implantation of murine blastocysts and on migration ability of the human trophoblast cell line Swan 71. We showed that BP3 caused a significant reduction of blastocyst expansion and a delayed hatching in a non-monotonic way. Besides, embryos displayed a delayed attachment in the three BP3 groups, resulting in a smaller implantation area on the 6th day of culture: BP3(2) (0.32 ± 0.07 mm2); BP3(20) (0.30 ± 0.08 mm2) and BP3(200) (0.25 ± 0.06 mm2) in comparison to the control (0.42 ± 0.07 mm2). We also found a reduced migration capacity of the human first-trimester trophoblast cell line Swan 71 in a scratch assay when exposed to BP3: the lowest dose displayed a higher uncovered area (UA) at 6h when compared to the control, whereas a higher UA of the wound was observed for the three BP3 concentrations at 18 and 24 h of exposure. The changes in UA provoked by BP3 restored to normal values in the presence of flutamide, an androgen receptor (AR) inhibitor. These results indicate that a direct impairment on early embryo implantation and a defective migration of extravillous trophoblast cells through the androgen receptor pathway can be postulated as mechanisms of BP3-action on early gestation with potential impact on fetal growth.


Assuntos
Benzofenonas , Movimento Celular , Implantação do Embrião , Protetores Solares , Trofoblastos , Raios Ultravioleta , Benzofenonas/toxicidade , Protetores Solares/toxicidade , Protetores Solares/farmacologia , Trofoblastos/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Camundongos , Animais , Humanos , Implantação do Embrião/efeitos dos fármacos , Blastocisto/efeitos dos fármacos , Feminino , Linhagem Celular
3.
Arch Toxicol ; 98(6): 1909-1918, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38553590

RESUMO

Previously, we found that the ultraviolet filter benzophenone-3 (BP3) causes fetal growth restriction in mice when is applied when implantation occurs (first week of gestation). However, whether BP3 can affect gestation and fertility after implantation period is unknown. We aimed to study the effects on reproductive physiology of the offspring caused by perinatal exposure to BP3. C57BL/6 pregnant mice were dermally exposed to 50 mg BP3/kg bw.day or olive oil (vehicle) from gestation day 9 (gd9) to postnatal day 21 (pnd1). We observed no differences in mother's weights, duration of gestation, number of pups per mother, onset of puberty or sex ratio. The weights of the pups exposed to benzophenone-3 were transiently lower than those of the control. Estrous cycle was not affected by perinatal exposure to BP3. Besides, we performed a fertility assessment by continuous breeding protocol: at 10 weeks of age, one F1 female and one F1 male mouse from each group was randomly chosen from each litter and housed together for a period of 6 months. We noticed a reduction in the number of deliveries per mother among dams exposed to BP3 during the perinatal period. To see if this decreased fertility could be associated to an early onset of oocytes depletion, we estimated the ovarian reserve of germ cells. We found reduced number of oocytes and primordial follicles in BP3. In conclusion, perinatal exposure to BP3 leads to a decline in the reproductive capacity of female mice in a continuous breeding protocol linked to oocyte depletion.


Assuntos
Benzofenonas , Camundongos Endogâmicos C57BL , Oócitos , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Benzofenonas/toxicidade , Benzofenonas/administração & dosagem , Gravidez , Masculino , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Oócitos/efeitos dos fármacos , Camundongos , Fertilidade/efeitos dos fármacos , Protetores Solares/toxicidade , Exposição Materna/efeitos adversos
4.
Reprod Toxicol ; 98: 117-124, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32956838

RESUMO

Understanding the effects of Bisphenol A (BPA) on early germ cell differentiation and their consequences in adult life is an area of growing interest in the field of endocrine disruption. Herein, we investigate whether perinatal exposure to BPA affects the differentiation of male germ cells in early life using a transgenic mouse expressing the GFP reporter protein under the Oct4 promoter. In this model, the expression of GFP reflects the expression of the Oct4 gene. This pluripotency gene is required to maintain the spermatogonial stem cells in an undifferentiated stage. Thus, GFP expression was used as a parameter to evaluate the effect of BPA on early germ cell development. Female pregnant transgenic mice were exposed to BPA by oral gavage, from embryonic day 5.5 to postnatal day 7 (PND7). The effects of BPA on male germ cell differentiation were evaluated at PND7, while sperm quality, testicular morphology, and protein expression of androgen receptor and proliferating cell nuclear antigen were studied at PND130. We found that perinatal/lactational exposure to BPA up-regulates the expression of Oct4-driven GFP in testicular cells at PND7. This finding suggests a higher proportion of undifferentiated spermatogonia in BPA-treated animals compared with non-exposed mice. Moreover, in adulthood, the number of spermatozoa per epididymis was reduced in those animals perinatally exposed to BPA. This work shows that developmental exposure to BPA disturbed the normal differentiation of male germ cells early in life, mainly by altering the expression of Oct4 and exerted long-lasting sequelae at the adult stage, affecting sperm count and testis.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Células Germinativas/efeitos dos fármacos , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Animais , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Feminino , Células Germinativas/citologia , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Masculino , Troca Materno-Fetal , Camundongos Transgênicos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Gravidez , Receptores Androgênicos/metabolismo , Fatores de Transcrição SOXB1/genética , Contagem de Espermatozoides , Motilidade dos Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
5.
Curr Protoc Toxicol ; 82(1): e89, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31765519

RESUMO

We describe a detailed protocol to establish a newborn rat whole ovary culture, which enables the study of direct effects (independent of hypothalamic-pituitary-gonadal axis) of endocrine disrupting chemicals (EDCs), such as benzophenone-3 (BP-3). This method is useful to understand changes in follicle formation, primordial to primary transition, and expression of regulatory molecules linked to these processes and also provides an alternative to animal models. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Rat ovarian surgery Basic Protocol 2: Whole organ/ovarian culture Basic Protocol 3: RNA isolation and quantitative real-time PCR Basic Protocol 4: Histological processing and staining.


Assuntos
Benzofenonas/toxicidade , Disruptores Endócrinos/toxicidade , Ovário/anatomia & histologia , Ovário/efeitos dos fármacos , Protetores Solares/toxicidade , Técnicas de Cultura de Tecidos/métodos , Animais , Animais Recém-Nascidos , Feminino , Guias como Assunto , Ovário/cirurgia , Ratos Wistar
6.
Acta Crystallogr C ; 67(Pt 5): m130-3, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21540527

RESUMO

The triply bridged title dinuclear copper(II) compound, [Cu(2)(C(2)H(3)O(2))(OH)(C(12)H(8)N(2))(2)(H(2)O)](NO(3))(2)·H(2)O, (I), consists of a [Cu(2)(µ(2)-CH(3)COO)(µ(2)-OH)(phen)(2)(µ(2)-OH(2))](2+) cation (phen is 1,10-phenanthroline), two uncoordinated nitrate anions and one water molecule. The title cation contains a distorted square-pyramidal arrangement around each metal centre with a CuN(2)O(3) chromophore. In the dinuclear unit, both Cu(II) ions are linked through a hydroxide bridge and a triatomic bridging carboxylate group, and at the axial positions through a water molecule. The phenanthroline groups in neighbouring dinuclear units interdigitate along the [010] direction, generating several π-π contacts which give rise to planar arrays parallel to (001). These are in turn connected by hydrogen bonds involving the aqua and hydroxide groups as donors with the nitrate anions as acceptors. Comparisons are made with isostructural compounds having similar cationic units but different counter-ions; the role of hydrogen bonding in the overall three-dimensional structure and its ultimate effect on the cell dimensions are discussed.


Assuntos
Ânions/química , Cobre/química , Compostos Organometálicos/química , Fenantrolinas/química , Cristalografia por Raios X , Ligação de Hidrogênio , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...