Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Gerontol ; 169: 111961, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36155067

RESUMO

BACKGROUND: Till date, there is an obvious obscurity of specific and early diagnostic biomarkers for Alzheimer's disease (AD). The promising diagnostic potential of serum miRNAs is increasingly emerging; however, rare miRNAs data originates from middle and low-income countries to provide proper validation in these highly affected populations. This study evaluated the diagnostic value of serum miR-34a, miR-29b and miR-181c in Egyptian AD patients. METHODS: Expression levels of serum miR-34a, miR-29b and miR-181c were determined using quantitative real time PCR in AD patients versus healthy controls. Amyloid Beta 42 (Aß42), Phosphorylated Tau (p-Tau) and TNF-α levels were also detected as distinctive AD markers. We further explored the correlation between miRNAs levels and Mini mental state examination (MMSE) scores. Finally, we conducted logistic regression and ROC curve analyses to evaluate the diagnostic values of the measured parameters. RESULTS: Sera miR-34a, miR-29b and miR-181c were significantly downregulated in AD patients and this decrease was associated with cognitive decline. AD patients manifested significant elevation of Aß42, pTau and TNF-α levels. The measured miRNAs showed good AD diagnostic value solely and when used together (AUC = 0.77, 95 % C·I. 0.62-0.93 at p < 0.01). Interestingly, combining miRNAs panel with Aß42, TNF-α and pTau levels remarkably increased the diagnostic power (AUC = 0.97, 95 % C·I. 0.94-1.00 at p < 0.001) achieving sensitivity 88.2 % and specificity 91.4 %. CONCLUSION: This study spots for the first time the diagnostic potential of serum miR-34a, miR-29b and miR-181c as minimally invasive AD biomarker panel in Egyptian patients and highlights their contribution in AD pathogenesis.


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , Peptídeos beta-Amiloides , Fator de Necrose Tumoral alfa , Egito , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Biomarcadores
2.
J Microencapsul ; 39(1): 72-94, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34958628

RESUMO

Nanotechnology is currently a field of endeavour that has reached a maturation phase beyond the initial hypotheses with an undercurrent challenge to optimise the safety, and scalability for production and clinical trials. Lipid-based nanoparticles (LNP), namely solid lipid nanoparticles (SLN) and nanostructured lipid (NLC), carriers are presently among the most attractive and fast-growing areas of research. SLN and NLC are safe, biocompatible nanotechnology-enabled platforms with ubiquitous applications. This review presents a modern vision that starts with a brief description of characteristics, preparation strategies, and composition ingredients, benefits, and limitations. Next, a discussion of applications and functionalization approaches for the delivery of therapeutics via different routes of delivery. Additionally, the review presents a concise perspective into limitations and future advances. A brief recap on the prospects of molecular dynamics simulations in better understanding NP bio-interface interactions is provided. Finally, the alliance between 3D printing and nanomaterials is presented here as well.


Assuntos
Nanopartículas , Nanoestruturas , Portadores de Fármacos , Lipídeos , Lipossomos
3.
Artigo em Inglês | MEDLINE | ID: mdl-34934357

RESUMO

PURPOSE: Female breast cancer is the most prevalent cancer worldwide. Emerging evidence shows that simvastatin (SIM) has promising anticancer activities. However, the underlying mechanisms are not fully elucidated. Increasing reports imply statins can modulate ferroptosis through disrupting reactive oxygen species (ROS) and glutathione peroxidase enzyme (GPX4) levels. However, whether ferroptosis contributes to SIM anticancer activity, especially regarding GPX4 is unclear. Moreover, poor aqueous SIM solubility hinders its delivery in adequate levels to tumor sites. Meanwhile, cubosomes are biocompatible nanocarriers that enhance lipophilic drug delivery. Therefore, in this study, we formulated a novel SIM-loaded cubosome (SIM-CB) and analyzed its cytotoxic activity on MCF-7 cancer cells in comparison with free SIM. METHODS: The present study tested the cytotoxic activity of SIM-CB on MCF-7 cells, in comparison with SIM using sulphorhodamine assay. We analyzed SIM-CB effect on apoptosis and cell cycle using flowcytometry, and investigated its effect on Bcl-2, caspase 3, ROS, reduced glutathione (GSH), lipid peroxides and GPX4 enzyme. Finally, we tested the persistence of SIM-CB apoptosis and ferroptosis activities on MCF-7 cells in presence of vitamin E, a potent antioxidant and ferroptosis inhibitor. RESULTS: SIM-CB was successfully formulated at the nano size. SIM-CB significantly increased simvastatin therapeutic activity, with IC50 of SIM-CB 52% lower than SIM. 95% CI [1.8, 2.7], SD = 0.34 for SIM-CB, and [4.1, 5.2], SD = 0.45 for SIM. Compared with free SIM, SIM-CB doubled total deaths and increased apoptosis (p < 0.05). Moreover, SIM-CB remarkably increased caspase-3, ROS, and lipid peroxide levels but decreased antiapoptotic Bcl-2 protein, GSH, and GPX4 compared with free SIM. Notably, SIM-CB elicited a high distinguished resistance against the inhibitory effects of vitamin E. CONCLUSION: To the best of our knowledge, this study is the first to present SIM-CB as a promising means to enhancing the therapeutic potential of simvastatin against breast cancer cells, through potentiating both apoptosis and ferroptosis.

4.
Front Aging Neurosci ; 13: 743573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712129

RESUMO

Alzheimer's disease (AD) is a progressive and deleterious neurodegenerative disease, strongly affecting the cognitive functions and memory of seniors worldwide. Around 58% of the affected patients live in low and middle-income countries, with estimates of increasing deaths caused by AD in the coming decade. AD is a multifactor pathology. Mitochondrial function declines in AD brain and is currently emerging as a hallmark of this disease. It has been considered as one of the intracellular processes severely compromised in AD. Many mitochondrial parameters decline already during aging; mitochondrial efficiency for energy production, reactive oxygen species (ROS) metabolism and the de novo synthesis of pyrimidines, to reach an extensive functional failure, concomitant with the onset of neurodegenerative conditions. Besides its impact on cognitive functions, AD is characterized by loss of synapses, extracellular amyloid plaques composed of the amyloid-ß peptide (Aß), and intracellular aggregates of hyperphosphorylated Tau protein, accompanied by drastic sleep disorders, sensory function alterations and pain sensitization. Unfortunately, till date, effective management of AD-related disorders and early, non-invasive AD diagnostic markers are yet to be found. MicroRNAs (miRNAs) are small non-coding nucleic acids that regulate key signaling pathway(s) in various disease conditions. About 70% of experimentally detectable miRNAs are expressed in the brain where they regulate neurite outgrowth, dendritic spine morphology, and synaptic plasticity. Increasing studies suggest that miRNAs are intimately involved in synaptic function and specific signals during memory formation. This has been the pivotal key for considering miRNAs crucial molecules to be studied in AD. MicroRNAs dysfunctions are increasingly acknowledged as a pivotal contributor in AD via deregulating genes involved in AD pathogenesis. Moreover, miRNAs have been proved to control pain sensitization processes and regulate circadian clock system that affects the sleep process. Interestingly, the differential expression of miRNA panels implies their emerging potential as diagnostic AD biomarkers. In this review, we will present an updated analysis of miRNAs role in regulating signaling processes that are involved in AD-related pathologies. We will discuss the current challenges against wider use of miRNAs and the future promising capabilities of miRNAs as diagnostic and therapeutic means for better management of AD.

5.
J Exp Pharmacol ; 13: 873-888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475786

RESUMO

PURPOSE: Polycystic ovary syndrome (PCOS) is a prevalent female endocrine disorder. 50-70% of PCOS patients suffer from glucose intolerance, insulin and ß cell impairments. Updated studies reveal the crucial regulatory role of inflammation modulators in various diseases, by manipulating autophagy and oxidative stress. However, the data available about autophagy in PCOS pancreas, especially in relation to inflammation key players are little. This study investigated pancreatic autophagy status in PCOS rat model, with miR-223-3p and NF-κB levels as pivotal regulators of oxidative stress-autophagy axis, insulin, and ß cell integrity. We then analyzed nanocurcumin effects as a putative anti-inflammatory nutraceutical on the disrupted parameters. METHODS: Nanocurcumin was characterized using transmission electron microscopy (TEM) and Fourier-transform IR (FT-IR) spectroscopy. Adult virgin Wistar rats were selected, and PCOS was induced using letrozole (1mg/kg). Nanocurcumin was ingested following letrozole. Sex hormones and insulin resistance were determined. miR-223-3p expression was determined using real-time PCR. Immunohistochemistry and Western blotting determined ß cells, NF-κB, and autophagy markers p62 and LC3II. RESULTS: PCOS group showed significant disruptions in sex hormones and a double fold increase in glucose and insulin levels, exhibiting insulin resistance. Immunostaining confirmed around 46% deterioration of ß cell mass. Real-time PCR showed significant downregulation of miR-223-3p. Immunohistochemistry and Western blotting revealed a drastic upsurge of NF-κB, and autophagy markers p62 and LC3II, confirming bioinformatics target analysis. Interestingly, compared to PCOS group, nanocurcumin (200mg/kg) significantly upregulated miR-223-3p expression by 30%. It subsided NF-κB and autophagy eruption to restore ß cell mass and attenuate insulin resistance. CONCLUSION: To the best of our knowledge, this study is the first to highlight the vital contribution of miR-223-3p and NF-κB levels in aggravating PCOS pancreatic autophagy and consequent impairments. It spots nanocurcumin potential as an inflammation and autophagy modulator, for possible better management of PCOS complications.

6.
Life Sci ; 256: 118003, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32589998

RESUMO

INTRODUCTION AND AIMS: Polycystic ovary syndrome (PCOS) is a widespread endocrine disorder affecting females. Mechanisms underlying PCOS complicated pathology remain largely unknown, making current treatment only symptomatic. Increasing reports suggest impaired PI3K/AKT/mTOR pathway and tumor necrosis factor-α (TNF-α) levels are involved in cellular proliferation and metabolism-related disorders. However, rare data explored their role in PCOS. Hence, this study investigated TNF-α and pancreatic PI3K/AKT/mTOR levels in PCOS animal model and evaluated their effects on developed pancreatic deficits. Secondly; we explored the impact of nanocurcumin as powerful anti-inflammatory supplement against these developed pancreatic pathologies. METHODS: PCOS was induced in rats using letrozole. Nanocurcumin was formulated to increase solubility and bioavailability of curcumin. Transmission electron microscopy (TEM), zeta potential and Infra-red spectroscopy (FT-IR) were used for characterization. Nanocurcumin was orally ingested for 15 days. FINDINGS: PCOS group exhibited significant disturbance in sex hormones, oxidative stress markers, and TNF-α levels as determined by immunoassay. Western blotting revealed significant reduction of PI3K/AKT/mTOR levels leading to impaired insulin sensitivity, decreased ß cells function and mass as confirmed by HOMA assessments and immunohistochemistry. Nanocurcumin significantly improved oxidative markers, glucose indices and TNF-α levels. It reinstated PI3K/AKT/mTOR levels, alleviated insulin resistance, and retained islets integrity consequently restoring normal sex hormonal levels. SIGNIFICANCE: To the best of our knowledge, the study is the first to report pancreatic role of PI3K/AKT/mTOR and TNF-α in PCOS and the first to demonstrate nanocurcumin promising potential against PCOS-related pancreatic molecular and histological pathologies that can indeed offer better control of the disease.


Assuntos
Curcumina/farmacologia , Resistência à Insulina , Nanopartículas , Pâncreas/efeitos dos fármacos , Síndrome do Ovário Policístico/tratamento farmacológico , Animais , Curcumina/administração & dosagem , Modelos Animais de Doenças , Feminino , Pâncreas/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Síndrome do Ovário Policístico/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
J Med Biochem ; 38(4): 512-518, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31496917

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is one of the most common female endocrine disorders around the world. Increasing evidence suggests that neurotransmitter Gamma-aminobutyric acid (GABA) is involved in the pathogenesis of PCOS through its central role in the hypothalamus. However, the peripheral role of GABA in PCOS has not been sufficiently investigated in spite of its existence in peripheral organs. First, the aim of this study is to, investigate serum GABA level in Egyptian PCOS patients. Second, to explore the correlation between serum GABA level with Body Mass Index (BMI), dyslipidemia, totaltestosterone and 25 (OH) vitamin D. METHODS: Eighty PCOS patients and eighty age-matched healthy females were included in this study. All parameters were assessed colourimetrically or with ELISA. RESULTS: PCOS patients exhibited significantly decreased serum GABA level compared to controls (p < 0.001). There was a significant positive correlation between serum GABA and 25(OH) vitamin D levels (r = 0.26, p = 0.018), and a significant negative correlation with total testosterone (r = - 0.3, p = 0.02), total cholesterol (TC) (r = - 0.31, p = 0.01) and LDL-Cholesterol (LDL-C) (r = - 0.23, p = 0.045), respectively. CONCLUSIONS: The findings of this study suggest that disrupted GABA level in the peripheral circulation is an additional contributing factor to PCOS manifestations. GABA deficiency was correlated with 25 (OH) vitamin D deficiency, dyslipidemia, and total testosterone. Further investigations for GABA adjustment might provide a promising means for better management of PCOS symptoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...