Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38001292

RESUMO

This paper presents the global research landscape and scientific progress on occupant thermal comfort in naturally ventilated buildings (OTC-NVB). Despite the growing interest in the area, comprehensive papers on the current status and future developments on the topic are currently lacking. Hence, the publication trends, bibliometric analysis, and systematic literature review of the published documents on OTC-NVB were examined. The search query "Thermal Comfort" AND "Natural Ventilation" AND "Buildings" was designed and executed to recover related documents on the topic from the Elsevier Scopus database. Results showed that 976 documents (comprising articles, conference papers, reviews, etc.) were published on the topic from 1995 to 2021. Further analysis showed that 97.34% of the publications were published in the English language. Richard J.de Dear (University of Sydney, Australia) is the most prolific researcher on OTC-NVB research, while Energy and Buildings has the highest publications. Bibliometric analysis showed high publications, citations, keywords, and co-authorships among researchers, whereas the most occurrent keywords are ventilation, natural ventilation, thermal comfort, buildings, and air conditioning. Systematic literature review demonstrated that OTC-NVB research has progressed significantly from empirical to computer-based studies involving complex mathematical equations, programs, or software like artificial neural networks (ANN) and computational fluid dynamics (CFD). In general, OTC-NVB research findings indicate that physiological, social, and environmental factors considerably influence OTC in NVBs. Future studies will likely employ artificial intelligence or building performance simulation (BPS) tools to examine relationships between OTC and indoor air/environmental quality, human behavior, novel clothing, or building materials in NVBs.

2.
Water Sci Technol ; 88(7): 1893-1909, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37831003

RESUMO

Using the soil and water assessment tool (SWAT), runoff in pervious and impervious urban areas was simulated in this study. In the meantime, as a novel application of machine learning, the emotional artificial neural network (EANN) model was employed to enhance the SWAT obtained for this study. As a result of the EANN model's capabilities in rainfall-runoff phenomena, the SWAT-EANN couple model has been used to assess urban flooding. The pervious, impervious, and water body areas of the study area were classified and mapped to estimate the cover change over three epochs. Land use map, precipitation data, temperature (minimum and maximum) data, wind speed, relative humidity, soil map, solar radiation, and digital elevation model were used as inputs for modelling rainfall-runoff of the study area in the ArcGIS environment. The accuracy assessment of this study was excellent (root-mean-square error 1 mm of precipitation). It also revealed that (a) a land use map illustrating changes in impervious, pervious surface, and water body for 1998, 2008, and 2018; (b) runoff modelling using a historical pattern of rainfall-runoff changes (1998-2018); and (c) descriptive statistical analysis of the runoff results of the research. This research will aid in urban planning, administration, and development. Specifically, it will prevent flooding and environmental problems.


Assuntos
Solo , Água , Nigéria , Movimentos da Água , Inundações
3.
Heliyon ; 9(9): e19978, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809756

RESUMO

Recycled aggregate (RA) made from waste concrete is an environmentally friendly alternative to natural aggregate (NA) for concrete manufacturing. However, compared to NA concrete, concrete produced with recycled aggregates has poor characteristics. Supplementary cementitious materials (SCMs) can be used to enhance the poor properties of recycled aggregate concrete (RAC). Silica fume and fly ash are commonly used SCMs in the World, but their high usage led to a shortage of silica fume and fly ash. Still, the deficiency of these materials in large parts of the world is a challenge that requires exploring alternative feedstock materials for the construction industry in the coming years. Wheat straw ash (WSA) is an agricultural waste product that could be used as an alternative SCM due to its pozzolanic behavior to enhance the properties of RAC. In addition, concrete is brittle and needs reinforcement, for which polypropylene fibers (PPFs) can be used. The current research examines the mechanical characteristics of fiber-reinforced RAC, including compressive strength, splitting tensile strength, and ductility performance. Durability indicators, such as chloride diffusion, chloride penetration, acid resistance, and water absorption test, were also assessed. The results showed that concrete samples with 10% WSA, 50% RA and 1.5% PPFs had the highest compressive and splitting tensile strength, 60.2 MPa and 7.25 MPa, respectively, representing increases of 24.75% and 30.65%, as compared to plain samples at 56 days. In these samples, water absorption was reduced by 13% due to the finer WSA particles resulting in the lowest reduction in strength and mass recorded when exposing concrete samples to acidic media. The statistical analysis also validated that irrespective of WSA and PPFs, the concrete with 0% RA had the highest performance in strength and durability behavior. The study showed that WSA and PPFs might be employed in tandem to offset the poor behavior of RA, enhance the bond between fibers and concrete, and improve the mechanical strength and durability performance of RAC, thus demonstrating its suitability as a sustainable and economical construction material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...