Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 47(7): 1693-1696, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363710

RESUMO

Under infrared ultrashort pulse laser stimulation, we investigate temperature-dependent second-harmonic generation (SHG) from nitrogen-vacancy (NV)-introduced bulk diamond. The SHG intensity decreases in the temperature range of 20-300°C, due to phase mismatching caused by refractive index modification. We discover that optical phonon scattering outperforms acoustic phonon scattering in NV diamond by fitting the temperature dependence of the SHG intensity using a model based on the bandgap change via the deformation potential interaction. This study presents an efficient and viable way for creating diamond-based nonlinear optical temperature sensing.

2.
J Phys Condens Matter ; 33(31)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34034248

RESUMO

Epitaxial low temperature grown GaAs (LT-GaAs) on silicon (LT-GaAs/Si) has the potential for terahertz (THz) photoconductive antenna applications. However, crystalline, optical and electrical properties of heteroepitaxial grown LT-GaAs/Si can be very different from those grown on semi-insulating GaAs substrates ('reference'). In this study, we investigate optical properties of an epitaxial grown LT-GaAs/Si sample, compared to a reference grown under the same substrate temperature, and with the same layer thickness. Anti-phase domains and some crystal misorientation are present in the LT-GaAs/Si. From coherent phonon spectroscopy, the intrinsic carrier densities are estimated to be 1015 cm-3for either sample. Strong plasmon damping is also observed. Carrier dynamics, measured by time-resolved THz spectroscopy at high excitation fluence, reveals markedly different responses between samples. Below saturation, both samples exhibit the desired fast response. Under optical fluences ⩾54µJ cm-2, the reference LT-GaAs layer shows saturation of electron trapping states leading to non-exponential behavior, but the LT-GaAs/Si maintains a double exponential decay. The difference is attributed to the formation of As-As and Ga-Ga bonds during the heteroepitaxial growth of LT-GaAs/Si, effectively leading to a much lower density of As-related electron traps.

3.
Phys Chem Chem Phys ; 22(32): 17807-17813, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32618981

RESUMO

We report the triplet-triplet annihilation (TTA) upconversion (UC) through triplet energy transfer (TET) from a sensitiser fixed on a solid surface to free emitters dissolved in solution. A carboxylic-acid derivative of Pt-porphyrin was used as the sensitiser fixed on an amino-treated surface of continuous nanoporous glass without aggregation. UC emission was observed under photoexcitation of 532 nm for porphyrin-fixed glass immersed in an emitter solution of 9,10-diphenylanthracene (DPA), showing that TET occurs through the solid-liquid interface. The dynamics of TET was analysed through both phosphorescence decay of the sensitiser and UC emission rise from the emitter. Two TET components with different rate constants were found, slower than diffusion-controlled reactions in solution by 1-2 orders of magnitude. Nevertheless, the solid surface TET rates were fast enough to obtain a high quantum yield over the solid-liquid interface. By melting DPA and soaking it into sensitiser-fixed porous glass, we fabricated an all-solid system enabling TTA-UC through the bulk interface.

4.
ACS Appl Mater Interfaces ; 11(23): 20812-20819, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31145592

RESUMO

Herein, triplet-triplet annihilation upconversion (TTA-UC) from near-infrared (NIR, 785 nm) to visible (yellow, centered at 570 nm) regions has been demonstrated in the binary solid of condensed chromophores. Microparticles of the binary solid comprising rubrene as a matrix (emitter) and π-extended Pd-porphyrin as a dopant (sensitizer) in a mole ratio of 1000:1 were obtained by solution casting. Excitation intensity dependence and quantum yield (QY) of the upconverted emission were characterized for individual particles under a microscope and revealed a low threshold intensity (∼100 mW/cm2) as compared to the solution and moderate UC-QY (∼0.5%) in the NIR range. The factors contributing to the UC-QY were investigated by time-resolved and steady-state spectroscopies. It was found that the intersystem crossing of the sensitizer, triplet energy transfer, and TTA occurred efficiently in the binary solid, and the fluorescence QY of the emitter governed the UC-QY.

5.
Photochem Photobiol Sci ; 17(5): 622-627, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29697105

RESUMO

The room-temperature phosphorescence chromophore, Pt(ii) coproporphyrin I (PtCP), was fixed on the surface of a 3D-network of nanoscale pores of porous glass through ion-exchange reaction. The absorption and phosphorescence spectra indicated that PtCP can be loaded while maintaining monomeric dispersion at concentrations well beyond solubility limits of PtCP in solution. The phosphorescence quantum yield of PtCP fixed on the surface was also found to have double the enhancement of solution. The extended lifetime of phosphorescence of PtCP bonded on the surface compared to that in solution clearly indicated that suppression of nonradiative deactivation plays a key role in high quantum yield and long triplet lifetime. This hybridization with nano-porous glass provides opportunities for various potential applications.

6.
Opt Express ; 24(14): 15204-11, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27410798

RESUMO

We developed an octave-band tunable optical vortex laser based on a 532 nm optical vortex pumped optical parametric oscillator with a simple linear-cavity configuration by employing cascaded non-critical phase-matching LiB3O5 crystals. The optical vortex output was tunable from 735 to 1903 nm. For a pump energy of 9 mJ, an optical vortex pulse energy of 0.24-2.36 mJ was obtained, corresponding to an optical-optical efficiency of 0.3-26%.

7.
Opt Express ; 23(14): 18338-44, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26191891

RESUMO

We demonstrated a widely tunable 1-µm optical vortex laser formed from a 0.532-µm optical vortex pumpedoptical parametric oscillator with a singly-resonant cavity configuration employing cascaded non-critical phase-matching LiB3O5 crystals. With this system, the topological charge of the pump beam can be selectively transferred to the signal or idler output, and a vortex output in the wavelength range of 850-990 nmor 1130-1300 nm could be obtained.A maximum signal vortex output energy of 0.9 mJ was achieved, corresponding to an optical efficiency of 10%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...