Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arab J Sci Eng ; : 1-26, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37361464

RESUMO

Cancer is one of the deadliest diseases facing humanity, one of the which is breast cancer, and it can be considered one of the primary causes of death for most women. Early detection and treatment can significantly improve outcomes and reduce the death rate and treatment costs. This article proposes an efficient and accurate deep learning-based anomaly detection framework. The framework aims to recognize breast abnormalities (benign and malignant) by considering normal data. Also, we address the problem of imbalanced data, which can be claimed to be a popular issue in the medical field. The framework consists of two stages: (1) data pre-processing (i.e., image pre-processing); and (2) feature extraction through the adoption of a MobileNetV2 pre-trained model. After that classification step, a single-layer perceptron is used. Two public datasets were used for the evaluation: INbreast and MIAS. The experimental results showed that the proposed framework is efficient and accurate in detecting anomalies (e.g., 81.40% to 97.36% in terms of area under the curve). As per the evaluation results, the proposed framework outperforms recent and relevant works and overcomes their limitations.

2.
Sensors (Basel) ; 23(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37050672

RESUMO

The advent of Artificial Intelligence (AI) and the Internet of Things (IoT) have recently created previously unimaginable opportunities for boosting clinical and patient services, reducing costs and improving community health. Yet, a fundamental challenge that the modern healthcare management system faces is storing and securely transferring data. Therefore, this research proposes a novel Lionized remora optimization-based serpent (LRO-S) encryption method to encrypt sensitive data and reduce privacy breaches and cyber-attacks from unauthorized users and hackers. The LRO-S method is the combination of hybrid metaheuristic optimization and improved security algorithm. The fitness functions of lion and remora are combined to create a new algorithm for security key generation, which is provided to the serpent encryption algorithm. The LRO-S technique encrypts sensitive patient data before storing it in the cloud. The primary goal of this study is to improve the safety and adaptability of medical professionals' access to cloud-based patient-sensitive data more securely. The experiment's findings suggest that the secret keys generated are sufficiently random and one of a kind to provide adequate protection for the data stored in modern healthcare management systems. The proposed method minimizes the time needed to encrypt and decrypt data and improves privacy standards. This study found that the suggested technique outperformed previous techniques in terms of reducing execution time and is cost-effective.


Assuntos
Inteligência Artificial , Segurança Computacional , Humanos , Algoritmos , Privacidade , Atenção à Saúde
3.
Comput Intell Neurosci ; 2022: 4048197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36156966

RESUMO

A large component of the Health Information Systems now comprises numerous independent apps created in the past that need to be merged to provide a more uniform service. In addition to affecting the Intelligent Health Board Functionality and dependability, the quality of these additional apps may also have an impact. A critical characteristic of the SHS's management and upkeep is the SHS's reliance on the real benefits provided to it. In speaking, an HMIS (Healthcare Management Information System) is a computer-based device that benefits medical practitioners to perform their duties more efficiently by coordinating all of their data. Even though these systems are widely used by most of the world, there is a significant need to comprehend these technologies and indeed the potential they provide. Healthcare data warehouses in Saudi Arabia have evolved through time, and this research examines how key service improvements in Saudi present varied viewpoints on how premium initiative help may be attained in health as well as how this could be done. When it comes to understanding how different types of medical professionals interact with healthcare systems throughout history, researchers developed stages of the maturity model.


Assuntos
Inteligência Artificial , Privacidade , Atenção à Saúde , Hospitais , Arábia Saudita
4.
Chemosphere ; 307(Pt 3): 136044, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35977573

RESUMO

The growth and implementation of biofuels and bioenergy conversion technologies play an important part in the production of sustainable and renewable energy resources in the upcoming years. Recycling sources from waste could efficiently ease the risk of world source strain. The waste classification was a good resolution for separating the waste from the recycled objects. It is inefficient and expensive to rely solely on manual classification of garbage and recycling sources. Convolutional neural networks (CNNs) have lately been used to classify recyclable waste, and this is the primary way for recycling the waste. This study presents a recycling waste classification using emperor penguin optimizer with deep learning (RWC-EPODL) model for bioenergy production. RWC-EPODL model focuses on recycling waste materials recognition and classification. When it comes to detecting and classifying trash, the RWC-EPODL model uses two stages. At the initial stage, the RWC-EPODL model uses AX-RetinaNet model for the recognition of waste objects. In addition, Bayesian optimization (BO) algorithm is applied as hyperparameter optimizer of the AX-RetinaNet model. Following the EPO algorithm with a stacked auto-encoder (SAE) model, the EPO algorithm is used to fine-tune the parameters of the SAE technique for trash classification. The RWC-EPODL model's experimental validation is examined through a number of studies. The RWC-EPODL approach has a 98.96 percent success rate. The comparative result analysis reported the better performance of the RWC-EPODL model over recent approaches.


Assuntos
Aprendizado Profundo , Spheniscidae , Gerenciamento de Resíduos , Animais , Teorema de Bayes , Biocombustíveis , Reciclagem/métodos , Gerenciamento de Resíduos/métodos
5.
Comput Intell Neurosci ; 2022: 3211512, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655498

RESUMO

The power of wireless network sensor technologies has enabled the development of large-scale in-house monitoring systems. The sensor may play a big part in landslide forecasting where the sensor linked to the WLAN protocol can usefully map, detect, analyze, and predict landslide distant areas, etc. A wireless sensor network comprises autonomous sensors geographically dispersed for monitoring physical or environmental variables, comprising temperature, sound, pressure, etc. This remote management service contains a monitoring system with more information and helps the user grasp the problem and work hard when WSN is a catastrophic event tracking prospect. This paper illustrates the effectiveness of Wireless Sensor Networks (WSN) and artificial intelligence (AI) algorithms (i.e., Logistic Regression) for landslide monitoring in real-time. The WSN system monitors landslide causative factors such as precipitation, Earth moisture, pore-water-pressure (PWP), and motion in real-time. The problems associated with land life surveillance and the context generated by data are given to address these issues. The Wireless Sensors Network (WSN) and Artificial Intelligence (AI) give the option of monitoring fast landslides in real-time conditions. A proposed system in this paper shows real-time monitoring of landslides to preternaturally inform people through an alerting system to risky situations.


Assuntos
Inteligência Artificial , Deslizamentos de Terra , Algoritmos , Humanos , Movimento (Física) , Tecnologia sem Fio
6.
Comput Intell Neurosci ; 2022: 5066147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35607469

RESUMO

The estimated 30 million children and adults are suffering with diabetes across the world. A person with diabetes can recognize several symptoms, and it can also be tested using retina image as diabetes also affects the human eye. The doctor is usually able to detect retinal changes quickly and can help prevent vision loss. Therefore, regular eye examinations are very important. Diabetes is a chronic disease that affects various parts of the human body including the retina. It can also be considered as major cause for blindness in developed countries. This paper deals with classification of retinal image into diabetes or not with the help of deep learning algorithms and architecture. Hence, deep learning is beneficial for classification of medical images specifically such a complex image of human retina. A large number of image data are considered throughout the project on which classification is performed by using binary classifier. On applying certain deep learning algorithms, model results into the training accuracy of 96.68% and validation accuracy of 66.82%. Diabetic retinopathy can be considered as an effective and efficient method for diabetes detection.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Algoritmos , Criança , Diabetes Mellitus/diagnóstico , Retinopatia Diabética/diagnóstico , Face , Humanos , Retina
7.
Chemosphere ; 303(Pt 2): 135065, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35618070

RESUMO

Environmental distresses linked to heavy metal (HM) impurity in the water received significant attention among research communities. Recently, advancements in industrial sectors like paper industries, mining, non-ferrous metallurgy, electroplating, mineral paint production, etc. have resulted in massive heavy metals in wastewater. In contrast to organic pollutants, HMs are not recyclable and can be simply engrossed by living organisms. Recently, different solutions have been employed for removing HMs from water and wastewater, like membrane filtration, chemical precipitation, adsorption, ion-exchange, flotation, flocculation, etc. Sorption can be considered one of the efficient solutions for eradicating HMs from waste water. With this motivation, this article concentrates on the design of Remora Optimization with Deep Learning Enabled Heavy Metal Sorption Efficiency Prediction (RODL-HMSEP) model onto Biochar. The proposed RODL-HMSEP technique intends to determine the sorption performance of HMs of various biochar features. Initially, the density based clustering (DBSCAN) technique is applied to simulating the features of metal adsorption data and splitting them into clusters of identical features. Besides, deep belief network (DBN) model was employed for prediction and the efficiency of the DBN model is optimally adjusted with utilize of RO technique. The experimental validation of the RODL-HMSEP technique ensured the promising performance of the RODL-HMSEP technique on the prediction of sorption efficiency onto biochar over other methods The experimental validation of the RODL-HMSEP technique ensured the promising performance of the RODL-HMSEP technique on the prediction of sorption efficiency onto biochar over other methods.


Assuntos
Aprendizado Profundo , Metais Pesados , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Metais Pesados/análise , Águas Residuárias , Poluentes Químicos da Água/análise
8.
Risk Manag Healthc Policy ; 13: 355-371, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425625

RESUMO

INTRODUCTION: The imperative need for ensuring optimal security of healthcare web applications cannot be overstated. Security practitioners are consistently working at improvising on techniques to maximise security along with the longevity of healthcare web applications. In this league, it has been observed that assessment of security risks through soft computing techniques during the development of web application can enhance the security of healthcare web applications to a great extent. METHODS: This study proposes the identification of security risks and their assessment during the development of the web application through adaptive neuro-fuzzy inference system (ANFIS). In this article, firstly, the security risk factors involved during healthcare web application development have been identified. Thereafter, these security risks have been evaluated by using the ANFIS technique. This research also proposes a fuzzy regression model. RESULTS: The results have been compared with those of ANFIS, and the ANFIS model is found to be more acceptable for the estimation of security risks during the healthcare web application development. CONCLUSION: The proposed approach can be applied by the healthcare web application developers and experts to avoid the security risk factors during healthcare web application development for enhancing the healthcare data security.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...