Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 4018, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29507361

RESUMO

The sequence context surrounding the AUG start codon of an open reading frame - the 'Kozak sequence' - affects the probability with which a scanning ribosome will recognize the start codon and start translating there. A significant number of transcripts in animals such as Drosophila contain weak Kozak sequences. This is predicted to cause constitutively low translation of these transcripts. We study here the additional possibility that these mRNAs have weak Kozak sequences to allow for the regulation of their translation in response to stress or altered cellular signaling. We find that transcripts with weak Kozak sequences are less sensitive to drops in global elongation rates and more sensitive to drops in global initiation rates compared to transcripts with strong Kozak sequences. This provides a mechanism by which changes in these global translation parameters differentially affect different pools of mRNAs depending on their Kozak sequence, thereby shaping the proteome. Interestingly, mRNAs with weak Kozak sequences are enriched for genes involved in neurobiology, suggesting that they constitute a functional group that can be translationally co-regulated.


Assuntos
Códon de Iniciação , Elongação Traducional da Cadeia Peptídica , Iniciação Traducional da Cadeia Peptídica , Proteoma/genética , RNA Mensageiro/genética , Animais , Linhagem Celular , Fases de Leitura Aberta
2.
Mol Biol Cell ; 28(22): 3070-3081, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28904211

RESUMO

Autophagy is an evolutionary conserved process by which eukaryotic cells undergo self-digestion of cytoplasmic components. Here we report that a novel Drosophila immunophilin, which we have named Zonda, is critically required for starvation-induced autophagy. We show that Zonda operates at early stages of the process, specifically for Vps34-mediated phosphatidylinositol 3-phosphate (PI3P) deposition. Zonda displays an even distribution under basal conditions and, soon after starvation, nucleates in endoplasmic reticulum-associated foci that colocalize with omegasome markers. Zonda nucleation depends on Atg1, Atg13, and Atg17 but does not require Vps34, Vps15, Atg6, or Atg14. Zonda interacts physically with Atg1 through its kinase domain, as well as with Atg6 and Vps34. We propose that Zonda is an early component of the autophagy cascade necessary for Vps34-dependent PI3P deposition and omegasome formation.


Assuntos
Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Imunofilinas/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Imunofilinas/genética , Fagossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais
3.
Sci Rep ; 7(1): 3722, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623304

RESUMO

The non-canonical initiation factors DENR and MCTS1 have been linked to cancer and autism. We recently showed in Drosophila that DENR and MCTS1 regulate translation re-initiation on transcripts containing upstream Open Reading Frames (uORFs) with strong Kozak sequences (stuORFs). Due to the medical relevance of DENR and MCTS1, it is worthwhile identifying the transcripts in human cells that depend on DENR and MCTS1 for their translation. We show here that in humans, as in Drosophila, transcripts with short stuORFs require DENR and MCTS1 for their optimal expression. In contrast to Drosophila, however, the dependence on stuORF length in human cells is very strong, so that only transcripts with very short stuORFs coding for 1 amino acid are dependent on DENR and MCTS1. This identifies circa 100 genes as putative DENR and MCTS1 translational targets. These genes are enriched for neuronal genes and G protein-coupled receptors. The identification of DENR and MCTS1 target transcripts will serve as a basis for future studies aimed at understanding the mechanistic involvement of DENR and MCTS1 in cancer and autism.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Perfilação da Expressão Gênica , Proteínas Oncogênicas/metabolismo , Fases de Leitura Aberta , Biossíntese de Proteínas , RNA Mensageiro/genética , Regulação da Expressão Gênica , Genes Reporter , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/metabolismo
4.
Nucleic Acids Res ; 44(16): 7555-67, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27141964

RESUMO

Adaptation to hypoxia depends on a conserved α/ß heterodimeric transcription factor called Hypoxia Inducible Factor (HIF), whose α-subunit is regulated by oxygen through different concurrent mechanisms. In this study, we have identified the RNA binding protein dMusashi, as a negative regulator of the fly HIF homologue Sima. Genetic interaction assays suggested that dMusashi participates of the HIF pathway, and molecular studies carried out in Drosophila cell cultures showed that dMusashi recognizes a Musashi Binding Element in the 3' UTR of the HIFα transcript, thereby mediating its translational repression in normoxia. In hypoxic conditions dMusashi is downregulated, lifting HIFα repression and contributing to trigger HIF-dependent gene expression. Analysis performed in mouse brains revealed that murine Msi1 protein physically interacts with HIF-1α transcript, suggesting that the regulation of HIF by Msi might be conserved in mammalian systems. Thus, Musashi is a novel regulator of HIF that inhibits responses to hypoxia specifically when oxygen is available.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Animais , Sequência de Bases , Proteínas de Ligação a DNA/genética , Regulação para Baixo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Loci Gênicos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mamíferos , Modelos Biológicos , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Traqueia/crescimento & desenvolvimento , Transcrição Gênica
5.
Fly (Austin) ; 8(3): 153-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482726

RESUMO

In this Extra View we comment on our recent work on Sudestada1 (Sud1), a Drosophila 2-oxoglutarate (2OG)-dependent dioxygenase that belongs to the Ribosomal Oxygenase (ROX) subfamily. Sud1 is required for normal growth in Drosophila, and is conserved in yeast and mammals. We reported that Sud1 hydroxylates the ribosomal protein S23 (RPS23), and that its loss of function restricts growth and provokes activation of the unfolded protein response, apoptosis and autophagy. In this Extra View we speculate on the role that RPS23 hydroxylation might play in stop codon recognition and on the possible link between Sud1 loss-of-function and activation of the Unfolded Protein Response, Stress Granules formation and growth impairment.


Assuntos
Processos de Crescimento Celular , Proteínas de Drosophila/metabolismo , Drosophila/enzimologia , Regulação da Expressão Gênica , Prolil Hidroxilases/metabolismo , Proteínas Ribossômicas/metabolismo , Animais , Hidroxilação
6.
Proc Natl Acad Sci U S A ; 111(11): 4025-30, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24550463

RESUMO

Genome sequences predict the presence of many 2-oxoglutarate (2OG)-dependent oxygenases of unknown biochemical and biological functions in Drosophila. Ribosomal protein hydroxylation is emerging as an important 2OG oxygenase catalyzed pathway, but its biological functions are unclear. We report investigations on the function of Sudestada1 (Sud1), a Drosophila ribosomal oxygenase. As with its human and yeast homologs, OGFOD1 and Tpa1p, respectively, we identified Sud1 to catalyze prolyl-hydroxylation of the small ribosomal subunit protein RPS23. Like OGFOD1, Sud1 catalyzes a single prolyl-hydroxylation of RPS23 in contrast to yeast Tpa1p, where Pro-64 dihydroxylation is observed. RNAi-mediated Sud1 knockdown hinders normal growth in different Drosophila tissues. Growth impairment originates from both reduction of cell size and diminution of the number of cells and correlates with impaired translation efficiency and activation of the unfolded protein response in the endoplasmic reticulum. This is accompanied by phosphorylation of eIF2α and concomitant formation of stress granules, as well as promotion of autophagy and apoptosis. These observations, together with those on enzyme homologs described in the companion articles, reveal conserved biochemical and biological roles for a widely distributed ribosomal oxygenase.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/enzimologia , Homeostase/fisiologia , Prolil Hidroxilases/metabolismo , Biossíntese de Proteínas/fisiologia , Proteínas Ribossômicas/metabolismo , Animais , Animais Geneticamente Modificados , Apoptose/genética , Autofagia/genética , Western Blotting , Pesos e Medidas Corporais , Cromatografia Líquida , Primers do DNA/genética , Proteínas de Drosophila/genética , Corpo Adiposo/citologia , Feminino , Técnicas de Silenciamento de Genes , Hidroxilação , Prolil Hidroxilases/genética , Processamento de Proteína Pós-Traducional/fisiologia , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Ribossômicas/genética , Espectrometria de Massas em Tandem , Resposta a Proteínas não Dobradas/genética
7.
Mol Biol Cell ; 25(6): 916-24, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24430872

RESUMO

Mammalian insulin-degrading enzyme (IDE) cleaves insulin, among other peptidic substrates, but its function in insulin signaling is elusive. We use the Drosophila system to define the function of IDE in the regulation of growth and metabolism. We find that either loss or gain of function of Drosophila IDE (dIDE) can restrict growth in a cell-autonomous manner by affecting both cell size and cell number. dIDE can modulate Drosophila insulin-like peptide 2 levels, thereby restricting activation of the phosphatidylinositol-3-phosphate kinase pathway and promoting activation of Drosophila forkhead box, subgroup O transcription factor. Larvae reared in high sucrose exhibit delayed developmental timing due to insulin resistance. We find that dIDE loss of function exacerbates this phenotype and that mutants display increased levels of circulating sugar, along with augmented expression of a lipid biosynthesis marker. We propose that dIDE is a modulator of insulin signaling and that its loss of function favors insulin resistance, a hallmark of diabetes mellitus type II.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Insulisina/genética , Transdução de Sinais , Animais , Tamanho Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Insulisina/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Neuropeptídeos , Fenótipo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Asas de Animais/citologia , Asas de Animais/metabolismo
8.
Int J Mol Sci ; 12(7): 4705-21, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21845106

RESUMO

Reduction in oxygen levels below normal concentrations plays important roles in different normal and pathological conditions, such as development, tumorigenesis, chronic kidney disease and stroke. Organisms exposed to hypoxia trigger changes at both cellular and systemic levels to recover oxygen homeostasis. Most of these processes are mediated by Hypoxia Inducible Factors, HIFs, a family of transcription factors that directly induce the expression of several hundred genes in mammalian cells. Although different aspects of HIF regulation are well known, it is still unclear by which precise mechanism HIFs activate transcription of their target genes. Concomitantly, hypoxia provokes a dramatic decrease of general transcription that seems to rely in part on epigenetic changes through a poorly understood mechanism. In this review we discuss the current knowledge on chromatin changes involved in HIF dependent gene activation, as well as on other epigenetic changes, not necessarily linked to HIF that take place under hypoxic conditions.


Assuntos
Epigenômica , Hipóxia , Animais , Cromatina/metabolismo , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/química , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/química , Histonas/metabolismo , Humanos
9.
PLoS One ; 5(8): e12390, 2010 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-20811646

RESUMO

BACKGROUND: The Hypoxia Inducible Factor (HIF) mediates cellular adaptations to low oxygen. Prolyl-4-hydroxylases are oxygen sensors that hydroxylate the HIF alpha-subunit, promoting its proteasomal degradation in normoxia. Three HIF-prolyl hydroxylases, encoded by independent genes, PHD1, PHD2, and PHD3, occur in mammals. PHD2, the longest PHD isoform includes a MYND domain, whose biochemical function is unclear. PHD2 and PHD3 genes are induced in hypoxia to shut down HIF dependent transcription upon reoxygenation, while expression of PHD1 is oxygen-independent. The physiologic significance of the diversity of the PHD oxygen sensors is intriguing. METHODOLOGY AND PRINCIPAL FINDINGS: We have analyzed the Drosophila PHD locus, fatiga, which encodes 3 isoforms, FgaA, FgaB and FgaC that are originated through a combination of alternative initiation of transcription and alternative splicing. FgaA includes a MYND domain and is homologous to PHD2, while FgaB and FgaC are shorter isoforms most similar to PHD3. Through a combination of genetic experiments in vivo and molecular analyses in cell culture, we show that fgaB but not fgaA is induced in hypoxia, in a Sima-dependent manner, through a HIF-Responsive Element localized in the first intron of fgaA. The regulatory capacity of FgaB is stronger than that of FgaA, as complete reversion of fga loss-of-function phenotypes is observed upon transgenic expression of the former, and only partial rescue occurs after expression of the latter. CONCLUSIONS AND SIGNIFICANCE: Diversity of PHD isoforms is a conserved feature in evolution. As in mammals, there are hypoxia-inducible and non-inducible Drosophila PHDs, and a fly isoform including a MYND domain co-exists with isoforms lacking this domain. Our results suggest that the isoform devoid of a MYND domain has stronger regulatory capacity than that including this domain.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Oxigênio/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Processamento Alternativo , Animais , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação Enzimológica da Expressão Gênica , Loci Gênicos/genética , Humanos , Hipóxia/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Estágios do Ciclo de Vida/genética , Pró-Colágeno-Prolina Dioxigenase/química , Pró-Colágeno-Prolina Dioxigenase/genética , Estrutura Terciária de Proteína , RNA Mensageiro/genética , Elementos de Resposta/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...