Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(42): 96208-96218, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37566324

RESUMO

The increasing occurrence of micropollutants in natural water bodies has medium to long-term effects on both aquatic life and human health. The aim of this study is to optimize the degradation of two pharmaceutical pollutants of emerging concern: amoxicillin and acetaminophen in aqueous solution at laboratory and pilot scale, by solar photo-Fenton process carried out at neutral pH using ethylenediamine-N,N'-disuccinic acid (EDDS) as a complexing agent to maintain iron in solution. The initial concentration of each compound was set at 1 mg/L dissolved in a simulated effluent from a municipal wastewater treatment plant (MWTP). A factorial experimental design and its surface response analysis were used to optimize the operating parameters to achieve the highest initial degradation rate of each target. The evolution of the degradation process was measured by ultra-performance liquid chromatography (UPLC/UV), obtaining elimination rates above 90% for both contaminants. Statistical study showed the optimum concentrations of Fe(III) at 3 mg/L at an Fe-EDDS ratio of 1:2 and 2.75 mg/L H2O2 for the almost complete removal of the target compounds by solar photo-Fenton process. Validation of the experimental design was successfully carried out with actual MWTP effluent spiked with 100 µg/L of amoxicillin and acetaminophen, each at pilot plant scale.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Humanos , Peróxido de Hidrogênio/química , Compostos Férricos , Acetaminofen , Ferro/química , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Oxirredução
2.
J Hazard Mater ; 452: 131279, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989795

RESUMO

Harmful algal blooms (HABs) in coastal areas similarly impact both ecosystems and human health. The translocation of phytoplankton species via maritime transport can potentially promote the growth of HABs in coastal systems. Accordingly, ballast water must be disinfected. The main goal of this study is to assess the effectiveness of different emerging biocides, including H2O2, peracetic acid (PAA), peroxymonosulfate (PMS), and peroxydisulfate (PDS). The effectiveness of these biocides is compared with that of conventional chlorination methods. Their effects on two ichthyotoxic microalgae with worldwide distribution, i.e., Prymnesium parvum and Heterosigma akashiwo, are examined. To ensure the prolonged effectiveness of the different reagents, their concentration-response curves for 14 days are constructed and examined. The results suggest a strong but shorter effect by PMS (EC50 = 0.40-1.99 mg·L-1) and PAA (EC50 = 0.32-2.70 mg·L-1), a maintained effect by H2O2 (EC50 = 6.67-7.08 mg·L-1), and a negligible effect by PDS. H. akashiwo indicates higher resistance than P. parvum, except when H2O2 is used. Based on the growth inhibition performance and consumption of the reagents as well as a review of important aspects regarding their application, using H2O2, PAA, or PMS can be a feasible alternative to chlorine-based reagents for inhibiting the growth of harmful phytoplankton.


Assuntos
Desinfetantes , Herbicidas , Humanos , Fitoplâncton , Oxidantes/toxicidade , Peróxido de Hidrogênio , Ecossistema , Proliferação Nociva de Algas , Desinfetantes/toxicidade
3.
Water Res ; 232: 119686, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764105

RESUMO

Ultraviolet (UV) radiation is a well-implemented process for water disinfection. The development of emergent UV sources, such as light-emitting diodes (LEDs), has afforded new possibilities for advanced oxidation processes. The emission wavelength is considered to be an important factor for photo-chemical processes in terms of both biological damage and energetic efficiency, as the inactivation mechanisms and mode-of-action may differ according to the wavelength that is applied. In addition, these processes merit exploration for inactivating emerging pathogens, such as marine vibrios, that are important bacteria to control in maritime activities. The main goal of this study was to compare the disinfection efficacy of several UV-LED driven processes with different modes of action. First, the effect of UV-LEDs was assessed at different UV ranges (UV-A, UV-B, or UV-C). Second, the possible enhancement of a combination with hydrogen peroxide (H2O2) or peroxymonosulfate salt (HSO5-) was investigated under two different application strategies, i.e. simultaneous or sequential. The results obtained indicate a high sensitivity of Vibrio alginolyticus to UV radiation, especially under UV-B (kobs = 0.24 cm2/mJ) and UV-C (kobs = 1.47 cm2/mJ) irradiation. The highest inactivation rate constants were obtained for UV/HSO5- (kobs (cm2/mJ)=0.0007 (UV-A); 0.39 (UV-B); 1.79 (UV-C)) with respect to UV/H2O2 (kobs (cm2/mJ)=0.0006 (UV-A); 0.26 (UV-B); and 1.54 (UV-C)) processes, however, regrowth was avoided only with UV/H2O2. Additionally, the disinfection enhancement caused by a chemical addition was more evident in the order UV-A > UV-B > UV-C. By applying H2O2 (10 mg/L) or HSO5- (2.5 mg/L) in a sequential mode before the UV, negligible effects were obtained in comparison with the simultaneous application. Finally, promising electrical energy per order (EEO) values were obtained as follows: UV/HSO5- (EEO (kWh/m3)=1.68 (UV-A); 0.20 (UV-B); 0.04 (UV-C)) and UV/H2O2 (EEO (kWh/m3)=2.15 (UV-A); 0.32 (UV-B); 0.04 (UV-C)), demonstrating the potential of UV-LEDs for disinfection in particular activities such as the aquaculture industry or maritime transport.


Assuntos
Peróxido de Hidrogênio , Purificação da Água , Peróxido de Hidrogênio/farmacologia , Vibrio alginolyticus , Purificação da Água/métodos , Raios Ultravioleta , Desinfecção/métodos , Processos Fotoquímicos
4.
Sci Total Environ ; 847: 157559, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35878852

RESUMO

The Ballast Water Management Convention (BWMC) establishes limits regarding the permissible number of viable organisms in discharged ballast water. Ozone as a ballast water treatment is interesting because it can be generated in-situ and has strong oxidant power. Additionally, some oxidants can be formed in reaction with seawater, especially brominated compounds, that assist in inactivating microorganisms. The objective of this study is to assess the efficacy of semicontinuous and batch ozonation as well as their combination with peroxymonosulfate salt (PMS) as methods to be used to ensure compliance with regulation D2 of the BWMC using Tetraselmis suecica as a standard microorganism. Growth modeling method was employed to determine the inactivation achieved by the treatments. The results show that ozone is an effective treatment for accomplishing the D2 of the BWMC. Batch ozonation is more efficient than semicontinuous ozonation probably because of the brominated compounds formed during the ozone saturation of the water. The oxidants that are developed during the ozonation of seawater prolong the residual effect of the treatment throughout the days of storage with practically no presence of them in the ballast tanks at 72 h. The addition of the PMS increases the inactivation in the semicontinuous ozonation, but a threshold concentration of ozone is needed to observe the synergistic effect of both oxidants. No increase is associated with the combination of O3 and PMS in the case of batch ozonation.


Assuntos
Microalgas , Ozônio , Poluentes Químicos da Água , Purificação da Água , Oxidantes , Oxirredução , Peróxidos , Navios , Purificação da Água/métodos
5.
Microorganisms ; 10(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35456785

RESUMO

Harmful algal blooms in coastal areas can significantly impact a water source. Microorganisms such as cyanobacteria and associated pathogenic bacteria may endanger an ecosystem and human health by causing significant eco-hazards. This study assesses the efficacy of two different reagents, H2O2 and S2O82−, as (pre-)treatment options for algae-laden waters. Anabaena sp. and Vibrio alginolyticus have been selected as target microorganisms. With the objective of activating H2O2 or S2O82−, additional experiments have been performed with the presence of small amounts of iron (18 µmol/L). For the cyanobacterial case, H2O2-based processes demonstrate greater efficiency over that of S2O82−, as Anabaena sp. is particularly affected by H2O2, for which >90% of growth inhibition has been achieved with 0.088 mmol/L of H2O2 (at 72 h of exposure). The response of Anabaena sp. as a co-culture with V. alginolyticus implies the use of major H2O2 amounts for its inactivation (0.29 mmol/L of H2O2), while the effects of H2O2/Fe(II) suggests an improvement of ~60% compared to single H2O2. These H2O2 doses are not sufficient for preventing the regrowth of V. alginolyticus after 24 h. The effects of S2O82− (+ Fe(II)) are moderate, reaching maximum inhibition growth of ~50% for Anabaena sp. at seven days of exposure. Nevertheless, doses of 3 mmol/L of S2O82− can prevent the regrowth of V. alginolyticus. These findings have implications for the mitigation of HABs but also for the associated bacteria that threaten many coastal ecosystems.

6.
Mar Pollut Bull ; 170: 112643, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34175694

RESUMO

The Ballast Water Management Convention (BWMC) establishes limits for viable organisms in discharged ballast water. However, organisms smaller than 10 µm are not considered in this regulation although they represent, in some regions, the majority of the phytoplankton organisms in marine water. The objective in this study is to assess three photosynthetic species smaller than 10 µm as potential standard test organism (STO) in experimentation focused on the inactivating efficacy of ultraviolet treatments (UV). A growth modelling method was employed to determine the reduction of the viable cell concentration under either light or dark post-treatment conditions to evaluate the importance of the photoreactivation. In spite of its moderate growth rate, the high UV resistance in combination with the abundance and worldwide distribution of Synechococcus sp. and the environmental importance of this species constitute important reasons for considering Synechococcus sp. as a valuable STO for ballast water treatment.


Assuntos
Navios , Purificação da Água , Fitoplâncton , Água
7.
Mar Pollut Bull ; 162: 111886, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33310544

RESUMO

Due to the increasing number of ecosystem invasions with the introduction of exogenous species via ballast water, the International Maritime Organization adopted the Ballast Water Convention (BWMC). The BWMC establishes standards for the concentration of viable organisms in a ballast water discharge. Ultraviolet (UV) irradiation is commonly used for treating ballast water; however, regrowth after UV irradiation and other drawbacks have been reported. In this study, improvement in UV treatment with the addition of hydrogen peroxide or peroxymonosulfate salt was investigated using the microalgae Tetraselmis suecica as the target organism. Results reported that each of these reagents added in a concentration of 10 ppm reduced the concentration of initial cells by more than 96%, increased the UV inactivation rate, and enabled reaching greater level of inactivation with the treatment. These improvements imply a reduction of the UV doses required for a consistent compliance with the BWMC standards.


Assuntos
Microalgas , Purificação da Água , Ecossistema , Peróxido de Hidrogênio , Peróxidos , Navios , Raios Ultravioleta
8.
Water Res ; 181: 115928, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32504908

RESUMO

The development of technologically advanced recirculation aquaculture systems (RAS) implies the reuse of water in a high recirculation rate (>90%). One of the most important phases for water management in RAS involves water disinfection in order to avoid proliferation of potential pathogens and related fish diseases. Accordingly, different approaches have been assessed in this study by performing a comparison of photolytic (UV-LEDs) at different wavelengths (λ = 262, 268 and 262 + 268 nm), photochemical (UV-LEDs/H2O2, UV-LEDs/HSO5- and UV-LEDs/S2O82-) and photocatalytic (TiO2/SiO2/UV-LEDs and ZnO/SiO2/UV-LEDs) processes for the disinfection of water in RAS streams. Different laboratory tests were performed in batch scale with real RAS stream water and naturally occurring bacteria (Aeromonas hydrophyla and Citrobacter gillenii) as target microorganisms. Regarding photolytic processes, higher inactivation rates were obtained by combining λ262+268 in front of single wavelengths. Photochemical processes showed higher efficiencies by comparison with a single UV-C process, especially at 10 mg L-1 of initial oxidant dose. The inactivation kinetic rate constant was improved in the range of 15-38%, with major efficiency for UV/H2O2 âˆ¼ UV/HSO5- > UV/S2O82-. According to photocatalytic tests, higher efficiencies were obtained by improving the inactivation kinetic rate constant up to 55% in comparison with a single UV-C process. Preliminary cost estimation was conducted for all tested disinfection methods. Those results suggest the potential application of UV-LEDs as promoter of different photochemical and photocatalytic processes, which are able to enhance disinfection in particular cases, such as the aquaculture industry.


Assuntos
Desinfecção , Purificação da Água , Aquicultura , Peróxido de Hidrogênio , Processos Fotoquímicos , Rios , Dióxido de Silício , Raios Ultravioleta
9.
Sci Total Environ ; 711: 134611, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31810674

RESUMO

Meeting the recent biological standards established by the Ballast Water Management Convention requires the application of ballast water treatment systems; ultraviolet irradiation is a frequently used option. However, organisms can repair the damage caused by ultraviolet irradiation primarily with photo-repair mechanisms that are dependent on the availability of light. The objective of this study is to quantify the impact of dark storage following ultraviolet irradiation on the viability of the microalgae Tetraselmis suecica. Results showed that one day of dark storage after ultraviolet irradiation enhanced the inactivation rate by 50% with respect to the absence of dark storage and increased up to the 84% with five days of dark storage. These results are consistent with photorepair, mostly in the first two days, prevented in the dark. The dose required to inactivate a determined ratio of organisms was correlated with the length of the dark post-treatment according to an inverse proportional function. This correlation may help to optimize the operation of ultraviolet ballast water treatment systems. Further, the results show that growth assays can detect organisms that are capable of repair after treatment with UV.


Assuntos
Clorófitas , Purificação da Água , Raios Ultravioleta , Água , Abastecimento de Água
10.
Water Res ; 163: 114866, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31344506

RESUMO

Over the years, industrial activities that generate high salinity effluents have been intensifying; this has relevant potential for causing organic and microbiological pollution which damages both human and ocean health. The development of new regulations, such as ballast water convention, encourage the development of treatment systems that can be feasible for treating seawater effluents. Accordingly, an approach based on the UV activation of persulfate salts has been assessed. In this scenario, two different persulfate sources (S2O82- and HSO5-) were evaluated under UV-C irradiation for disinfection purposes. An optimization process was performed with low chemical doses (<1 mM). In order to extensively examine the applicability on seawater, different water matrices were tested as well as different microorganisms including both fecal and marine bacteria. An enhancement of UV-inactivation with the addition of persulfate salts was achieved in all cases, kinetic rate constant has been accelerated by up to 79% in seawater. It implies a UV-dose saving up to 45% to achieve 4-log reductions. Best efficiencies were obtained with [HSO5-] = 0.005 mM and [S2O82-] = 0.5 mM. Higher effectiveness was obtained with the use of HSO5- due to its low stability and interaction with chloride. Also, different responses were obtained according to the specific microorganisms by achieving faster disinfection in Gram-negative than in Gram-positive bacteria, the sensitivity observed was Vibrio spp. > E. coli > E. faecalis ≈ Marine Heterotrophic Bacteria. With an evaluation of regrowth after treatment, greater cell damage was detected with the addition of persulfate salts. The major ability of regrowth for marine bacteria encourages the use of a residual disinfectant after disinfection processes.


Assuntos
Desinfecção , Purificação da Água , Escherichia coli , Sais , Raios Ultravioleta
11.
Photochem Photobiol Sci ; 18(4): 878-883, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30411767

RESUMO

The development of advanced photochemical processes has experienced the emergence of a promising alternative for water disinfection, different from traditional methods. The applicability has primarily been investigated in drinking and wastewater; however, new challenges related to microbiological control in marine waters necessitate evaluating the applicability of this process in such water matrices. In this study, the efficacy of persulfate (PDS) activated with UV-light against E. faecalis has been tested on the bench scale. Firstly, optimization of the different PDS concentrations (1-10 mM) and exposure times (0-5 min) was performed in distilled water. 1 mM of PDS was selected as the best dosage within the range tested. Secondly, in order to evaluate the effects of different inorganic compounds usually found in natural waters, the efficiency of the UV/PDS system was tested in three different matrices: mineral water, saltwater, and marine saltwater. Finally, different bacteria were evaluated in consortium (E. coli + E. faecalis), suggesting the same inactivation level independently on the bacterial groups and structures. The results suggest that PDS is an attractive alternative to other photochemical processes currently in use for seawater treatment and this application deserved further research.

12.
Ecotoxicol Environ Saf ; 169: 68-75, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30423509

RESUMO

Cruise ship wastewater discharges are pollution sources towards the marine environment that are poorly characterized. In this study, wastewater samples from cruise ships have been obtained during repair works in a shipyard. Different organic pollutants have been analyzed and their concentrations were similar to those in urban wastewaters for pharmaceuticals and fragrances, but higher for UV filters and PAHs. For the first time, cypermethrin, a pesticide highly toxic towards aquatic species, was found at relevant concentrations (>1 µg L^-1). The faecal microorganisms were for all parameters higher than 10^4 CFU 100 mL^-1, which together with the presence of antibiotic compounds in wastewater (e.g., triclosan), could potentially lead to the generation of antibiotic resistance bacteria (ARB). The historical position of cruise ships, determined from the Automatic Identification System (AIS), were used to define the time ships were underway, at port, or in repair. From ship's passenger and crew load, and from estimates of discharges the total volume of wastewater produced by these ships (371,000 m^3 year^-1) and the average flow (0.15 ±â€¯0.03 m^3crew^-1 day^-1) were calculated.


Assuntos
Navios , Águas Residuárias/química , Águas Residuárias/microbiologia , Poluentes Químicos da Água/análise , Poluentes da Água/análise , Praguicidas/análise , Piretrinas/análise
13.
Water Res ; 140: 377-386, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29753242

RESUMO

Seawater treatment is increasingly required due to industrial activities that use substantial volumes of seawater in their processes. The shipping industry and the associated management of a ship's ballast water are currently considered a global challenge for the seas. Related to that, the suitability of an Electrochemical Advanced Oxidation Process (EAOP) with Boron Doped Diamond (BDD) electrodes has been assessed on a laboratory scale for the disinfection of seawater. This technology can produce both reactive oxygen species and chlorine species (especially in seawater) that are responsible for inactivation. The EAOP was applied in a continuous-flow regime with real seawater. Natural marine heterotrophic bacteria (MHB) were used as an indicator of disinfection efficiency. A biphasic inactivation kinetic model was fitted on experimental points, achieving 4-Log reductions at 0.019 Ah L-1. By assessing regrowth after treatment, results suggest that higher bacterial damages result from the EAOP when it is compared to chlorination. Furthermore, several issues lacking fundamental understanding were investigated such as recolonization capacity or bacterial community dynamics. It was concluded that, despite disinfection processes being effective, there is not only a possibility for regrowth after treatment but also a change on bacterial population diversity produced by the treatment. Finally, energy consumption was estimated and indicated that 0.264 kWh·m-3 are needed for 4.8-Log reductions of MHB; otherwise, with 0.035 kWh·m-3, less disinfection efficiency can be obtained (2.2-Log red). However, with a residual oxidant in the solution, total inactivation can be achieved in three days.


Assuntos
Bactérias , Técnicas Eletroquímicas/métodos , Água do Mar/microbiologia , Navios , Purificação da Água/métodos , Boro , Cloro/farmacologia , Diamante , Desinfecção/instrumentação , Desinfecção/métodos , Técnicas Eletroquímicas/instrumentação , Eletrodos , Processos Heterotróficos , Cinética , Noruega , Oxidantes/química , Oxirredução , Microbiologia da Água
14.
Environ Sci Pollut Res Int ; 25(28): 27693-27703, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29307073

RESUMO

The importance of seawater treatment in order to avoid microbiological pollution related to aquaculture or ballast water management has increased during the last few years. Bacterial indicators used for the evaluation of different disinfection treatments are usually related with both waste and drinking water, these standards are not usual microorganisms found in seawater. Thus, it is thought necessary to study the behavior of different marine-specific organisms in regard to improve the disinfection processes in seawater. In this study, three different bacteria have been selected among major groups of bacterial community from marine waters: two water-associated, Roseobacter sp. and Pseudomonas litoralis, and one sediment-associated, Kocuria rhizophila. A kinetic inactivation model together with a post-treatment growth tendency has been obtained after the application of UV-C and UV/H2O2 processes. According to the first kinetic rate constant, different responses were obtained for the different bacterial groups. Once the treatment was applied, modeling of growth curves revealed high recover within the first 3 days after treatment, even when UV/H2O2 was applied. This study introduces a sensitivity index, in which results show different levels of resistance for both treatments, being Roseobacter sp. the most sensitive bacteria, followed by P. litoralis and K. rhizophila.


Assuntos
Desinfecção/métodos , Peróxido de Hidrogênio/química , Água do Mar/microbiologia , Raios Ultravioleta , Cinética , Micrococcaceae/efeitos dos fármacos , Micrococcaceae/efeitos da radiação , Modelos Teóricos , Processos Fotoquímicos , Pseudomonas/efeitos dos fármacos , Pseudomonas/efeitos da radiação , Roseobacter/efeitos dos fármacos , Roseobacter/efeitos da radiação
15.
Sci Total Environ ; 603-604: 550-561, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28645053

RESUMO

Assessing the disinfection of ballast water and its compliance with international standards requires determining the size, viability, and concentration of planktonic organisms. The FlowCAM (Flow Cytometer and Microscope) is an Imaging Flow Cytometry designed to obtain the particle concentration, images, and quantitative morphologic information. The objective in this paper is to establish the basis for transforming the FlowCAM from being a laboratory analyzer into a tool for systematic monitoring of ballast water. The capacity of the FlowCAM was evaluated by analyzing artificial microbeads, phytoplankton monocultures, and real seawater samples. Microbead analyses reported high accuracy and precision in size and concentration measurements. Monoculture analyses showed the effect of disinfection treatments in cell appearance and growth. Low concentration and heterogeneity of particles in real seawater analyses require the comprehensive observation of images by experts. Additionally, some physical characteristics of the device must be improved. The optimization of device configuration enables the quick transferring of files and information between parties involved in ballast water management. FlowCAM may become a feasible technology for this after the device and protocols are adapted.


Assuntos
Desinfecção , Fitoplâncton , Água do Mar , Navios , Purificação da Água
16.
Sci Total Environ ; 581-582: 144-152, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011021

RESUMO

Water contained on ships is employed in the majority of activities on a vessel; therefore, it is necessary to correctly manage through marine water treatments. Among the main water streams generated on vessels, ballast water appears to be an emerging global challenge (especially on cargo ships) due to the transport of invasive species and the significant impact that the ballast water discharge could have on ecosystems and human activities. To avoid this problem, ballast water treatment must be implemented prior to water discharge in accordance with the upcoming Ballast Water Management Convention. Different UV-based treatments (photolytic: UV-C and UV/H2O2, photocatalytic: UV/TiO2), have been compared for seawater disinfection. E. faecalis is proposed as a biodosimeter organism for UV-based treatments and demonstrates good properties for being considered as a Standard Test Organism for seawater. Inactivation rates by means of the UV-based treatments were obtained using a flow-through UV-reactor. Based on the two variables responses that were studied (kinetic rate constant and UV-Dose reductions), both advanced oxidation processes (UV/H2O2 and photocatalysis) were more effective than UV-C treatment. Evaluation of salinity on the processes suggests different responses according to the treatments: major interference on photocatalysis treatment and minimal impact on UV/H2O2.


Assuntos
Desinfecção , Salinidade , Água do Mar/química , Navios , Raios Ultravioleta , Purificação da Água , Peróxido de Hidrogênio , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...